
An Architecture for Dynamic Multimedia QoS Control

João Bom2, Paulo Marques2, Miguel Correia3, Paulo Pinto1,2

1Instituto Superior Técnico, Lisboa
2INESC, R. Alves Redol, 9 P-1000 Lisboa, Portugal

3Universidade de Lisboa, Faculdade de Ciências, Campo Grande, Bloco C5, Piso 1, 1700 Lisboa
{joao.bom,paulo.marques,paulo.pinto} @inesc.pt mpc@di.fc.ul.pt

Abstract: The execution of repetitive tasks related with the handling of continuous media is
something that should be detached as much as possible from multimedia applications.
However, applications should have control over the most significant aspects of the process.
This paper presents a framework to enable applications to exercise this control in terms of QoS
concepts. Instead of defining low-level QoS parameters that might be meaningless to users, a
sequence of QoS scenarios is provided by the applications to a QoS Manager to enable it to
decide which is the best option at any moment. Based on this information the QoS Manager
dynamically adapts the system to the current conditions on the network and at the end
machines. Some experimental results of the algorithm are presented.

Keywords: Dynamic QoS Control; User Application; Practical Experiences

1. Introduction

The subject of quality of service (QoS) for distributed multimedia applications is rather
complex due to various aspects involved. The main idea is that multimedia applications are
very resource demanding and ideally could grab as much machine power or network
bandwidth as the user could get. In practice, technological limitations or economic reasons
impose a limit at some level. The sensible way to approach the challenge of building these
applications is to try to get the most out of the realistic conditions where they operate. This
best effort approach should be, as much as possible, independent from each specific media and
technology. In this way, applications will evolve gracefully with the improvement of the
technology. This approach can also be used as an adaptation mechanism to different conditions
of operation.

This paper is concerned with multimedia applications over broadband networks, and with
the control of the QoS when the dynamic conditions of the connection can vary substantially.
A basic approach to QoS control when the network conditions are fairly stable, taking into
account intramedia and intermedia synchronization for continuous streams, was performed
earlier [6].

The framework proposed in this paper is based on two main prerequisites:
a) the distinction between media specific adaptation techniques to change QoS and a

general QoS control algorithm; and
b) the mapping from a general QoS description at user level to lower level QoS concepts

(dependent on the media) in order to simplify user control over the connections.

Consequently, the paper focus largely on the interaction between the application and the
QoS algorithm, defining the main entities involved and the media independent data structures
they both work with.

The algorithm interacts with the application in terms of QoS parameters meaningful to the
programmer. It allows the application to define its own policies of QoS control, and whether it
wants to have higher or lower control over the QoS. Applications provide their range of
acceptable operating conditions together with their encoding dependent solutions to the
variations of these conditions, in order to enable the algorithm to exercise its control
autonomously (as long as it stays within the range).

The framework makes a clear distinction between data and control (as RTP also does) -
multimedia data is captured and sent (or received and presented) directly to (or from) the
transport protocol by a "media device manager", freeing the application from the complexity of
such tasks.

One factor that can introduce dynamic operating conditions is the use of ATM technology.
Instead of being limited to a connection traffic contract, better quality of service could be
obtained by exploiting the statistical nature of the network. This is true as long as the
application could handle most of the situations it can incur by using non-guaranteed conditions.
Most of the Call Admission Control algorithms are conservative [1] and some network
resources can be used at user discretion. The QoS algorithm works in an integrated way with
the transport management algorithm to adapt the application and take advantage of these spare
resources.

Another novel part in our proposal is that the algorithm takes into account the operating
conditions on both machines in its control loop, and not only the network situation. This is
relevant as the increase of bandwidth available in the network many times puts the processing
restrictions in the machines.

2. Network Considerations

Traditional transport protocols, such as TCP, have already too many assumptions in terms
of the semantics of the data communication or network behaviour. For instance, the flow
control is not suitable for continuous media because missing data can be tolerated but
retransmissions or extra delays cannot; the congestion control assumes congestion rather than
errors when a segment does not arrive. The use of abstract portions of data (segments) with
little relevance to the application makes the overall situation worse.

New protocols, such as RTP [13], overcome most of the previous limitations by the use of
application level framing (ALF), the integration of their processing with the application’s own
processing (integrated layer processing, ILP) [5], and the use of profiles for the control
algorithms that are more suitable to the application’s requirements. Moreover, RTP has an
associated control protocol, RTCP, to assess network conditions but does not impose any pre-
defined algorithm to work on control data. In this paper, it is not so important to highlight the
concrete case of our choice of RTP but to consider these abstract features of the new
protocols (some extensions were even felt as being needed in the RTCP packets).

A natural way to use ATM networks with a best-effort service is to choose the Available
Bit Rate (ABR) class of service. However, there are some reasons why this is not suitable for
multimedia: the ABR was designed to serve data applications that are able to control spare
bandwidth. They can adapt to varying conditions on the network but it is important that cell
loss must be as low as possible (data applications are rather sensitive to cell loss). This is not a

requirement to multimedia applications. ABR has its own control cycle (to prevent losses)
which is based on multimedia abstract concepts, such as cells (the same problem pointed out
above for traditional transport protocols).

The sensible way is then to use the Variable Bit Rate (VBR) class of service, and use
priorities to work over contract values. The application sets a lower limit of bandwidth for the
connection, below which it is useless to maintain the interaction. Then tries to raise the quality
by using CLP=1 cells as much as the network can handle. We assume that the UPC/NPC
mechanism uses cell tagging until the Peak Cell Rate (PCR) value is reached and discards cells
above this rate. Therefore, a video connection, for instance, should set the PCR in accordance
to the frame length, but can set the Sustainable Cell Rate (SCR) to a value lower than the
actual value it intends to use (just above the minimum QoS level, for instance).

3. System Architecture

QoS control is a complex issue that should not have to be handled explicitly every time an
application is programmed. The architecture presented here performs most of the QoS related
operations. The objective is to create an environment where applications using media already
installed in the system are programmed in a very straightforward way. The introduction of new
media in the system must also be a relatively simple task.

The architecture is composed of a set of interacting components for each host: a QoS
Manager, a Media Device Manager, a Protocol Component, Media Device Drivers and the
applications themselves (figure 1). The first two components are specific for this architecture.
The Protocol Component provides an interface to the protocols, which can be implemented by
the component or in the operating system (OS). The Media Device Drivers components are
interfaces to device drivers of continuous media (audio and video).

Aplications

QoS Manager Media Device
Manager

RTPRTCP
Control

Data

Network

Lower level protocols

Device drivers

Figure 1. Architecture components in one of the system’s hosts.

A major simplification in the architecture is the facility to handle most of the tasks related
to the multimedia data directly, outside of the applications. The Media Device Manager
(MDM) performs whatever a medium needs to be processed and offers a control interface to
enable external components to change its internal behaviour. The external components can be
the QoS Manager for issues related with QoS, or the application itself for other kind of
actions. As this paper is concerned with QoS we will only focus on the interaction with the
QoS Manager. Basically, the MDM gets data to and from the protocols component and the
device drivers (and from there to and from the peripherals such as disks, video windows,

speakers, etc.). So, the MDM hides the media device drivers complexity from the remainder of
the system.

The QoS Manager is the component that adjusts the QoS of the system to the current
conditions of the network and hosts. These conditions are measured by monitoring, using
RTCP packets (section 4.1). It also manages RTP sessions on behalf of the application.
Monitoring is highly dependent on the specific media being handled, so little generalization can
be achieved. However, if the interactions are normalized it is easy to reuse algorithms and
ways of acting. A three part structure was devised: 1) the monitoring activity which produces
an output value; 2) a decision algorithm to control the QoS, which uses 3) a set of scenarios to
act upon the media to change some conditions. The introduction of a new medium needs the
linking of a monitoring algorithm to the QoS Manager and the provision of the related actions
in the Media Device Manager.

QoS management, monitoring and control, is performed only at the sender using the
information returned by RTCP receiver report packets.

3.1. QoS parameters

QoS is adapted by changing the values of certain QoS parameters. Examples of QoS
parameters are frame rate (video), colour depth (video), sample rate (audio), packet loss rate
and latency.

QoS in multimedia has a slightly different meaning than the traditional concept in the OSI
model [9]. Although both end up to values and rates of cell loss, throughput, delay, etc., it is
difficult to relate the relative importance of these entities to the overall multimedia quality. A
multimedia application user has a subjective assessment of the data (s)he is receiving, and, for
instance, a greater delay of a frame than its presentation time is equivalent to a loss. Therefore,
it is very difficult to get concrete values for the lower level concepts listed above from the user
or programmer. He wants to express his intentions in terms of video frame rates, quality
factors, audio sampling rates and encoding quality, etc. So, QoS parameters can be divided in
two classes:

• Programming level QoS parameters: the QoS parameters that make sense to the
programmer: frame rate, frame loss rate, Q factor, etc. These are the parameters
used by the application to negotiate with the QoS Manager.

• System (OS and network) level QoS parameters: lower level QoS parameters that
make sense to the system: packet size, bandwidth, packet loss rate, frame loss rate,
etc. These are the parameters used by the Media Device Manager to interact with
the network and the operating system. This component has to make translations
between the two classes of QoS parameters. The idea is to give the programmer an
abstraction that makes sense to him and not just to the network or OS.

3.2. Application -- QoS Manager interaction

The application has to define for each media stream a QoS scale composed by a sequence
of QoS levels (the scenarios) that define the working states for that stream. Each level of the
sequence represents a lower QoS than its predecessor.

A QoS level has a set of QoS parameter values that are media dependent and meaningful
to the monitoring part of the QoS Manager and the Media Device Manager1. For example, a
five level QoS scale for a M-JPEG video stream can have values for frame rate and Q factor at

1 It is also plausible to think that some parameters are common to all the media as, for example, latency.

each level: [(25, 30), (15, 30), (15, 100), (5, 100), (5, 150)]. The bandwidth and the need for
resources on hosts decrease as the system goes through the scale.

A composed media stream is a set of media streams. The application uses this concept to
define order relations between them that are used by the QoS Manager to decide in which
stream should perform actions first (for better or worse). These order relations are defined in
terms of priorities. I.e., each stream has a priority in its composed stream and each composed
stream has a priority. This permits, for example, to have a composed media stream of one
audio stream and one video stream for each way of a video-conference; the audio stream
should have a higher priority because in such a service audio quality is more important than
video. If problems arrive, the QoS manager will decrease the video’s QoS before the audio’s.

The application - QoS Manager interaction has two relevant phases: initialization and run-
time.

In the initialization phase of a stream the application requests the manager to open one (or
more) channel and gives it the corresponding QoS scale. It also selects the desired QoS initial
level (bandwidth reservations can be obtained using this initial level or the lowest level of the
scale). The application defines this initial point in terms of Programming Level QoS
parameters. A translation to System Level QoS parameters used to negotiate with the network
must be performed. To prevent the QoS Manager to become too media specific the Media
Device Manager must be invoked to do it.

The QoS Manager either succeeds in establishing the connection or not and informs the
application. The application can also register its interest to receive some events from the QoS
Manager. Events are associated with QoS level changes: change to the minimum QoS level,
any change, etc.

In the run-time phase there are two kinds of actions: 1) The QoS Manager can send events
to the application; 2) The application can invoke operations on the QoS Manager, such as
terminate a stream, change the present QoS level, ask for status (QoS levels) of all the streams,
add/delete a QoS level, change the events registration, change priorities, and change the
composition of a composed stream.

Given these mechanisms the programmer can define different policies of QoS control for
the application according to its needs.

3.3. QoS Manager -- Media Device Manager interaction

The interaction between the QoS Manager and the Media Device Manager starts with the
indication of the parameters for the initial level, in order to initialize the Device Drivers and to
get the System Level QoS parameters back.

The other kind of interaction is the request to change something on the data stream. There
are less severe actions performed to avoid changing the QoS level which are media dependent
(one operation per medium). Examples of a less severe action for audio is the enlargement of
packet sizes and for MPEG is the discard of a B frame. Severe actions are the change of QoS
levels and the set of parameters of the new level must be given to the Media Device Manager.

4. End-to-End Control Algorithm

QoS management consists of QoS monitoring and QoS control algorithms. The aim of the
first is to observe the working conditions, whereas the second acts to adjust the system
towards a new stable condition when problems happen or when resources become available.

The basic idea is the following: when network congestion is detected or when machine
loads prevent the application from guaranteeing the current QoS level some action on one or
more streams have to be done. Depending on the severity of the problem, the QoS control
invokes a less severe action on the Media Device Manager, or forces it to decrease a QoS level
on its stream. The streams are selected based on the priorities referred in section 3.2. On the
other hand, when the QoS level is lower than it could be and the system is not at its top level,
the QoS level is increased. The objective is to have the better QoS that the system can provide.
Most of the times, if more is requested less will be obtained. An intuitive example that
illustrates this is when the network is congested: it will only get worse if the same amount of
data keeps being sent.

4.1. QoS Monitoring

The QoS monitor works with an end-to-end closed control loop. The algorithm is cyclic
and reacts each time an RCTP receiver report packet is received (figure 2) [13]. The monitor
looks at the behaviour of both network level (e.g., cell loss, jitter) and application level events
(e.g., number of discarded frames at the receiver due to machine overload). In order to have
the latter information, the control packets had to be extended with the following two fields (the
extension feature is considered in RTCP by the inclusion of profile-specific extensions):

• too_late – indicates the number of frames lost or delayed (in relation to its
presentation time) in the network or at the sender.

• nshown – indicates the amount of frames discarded by the receiver due to machine
overload. It is mainly related with the scheduling procedure at the receiver and gives
a good indication of the application's local behaviour and machine load.

Figure 2. QoS monitoring scheme.

The number of frames lost is the sum of: 1) the number of frames lost in the network
(obtained from the numbers of packets lost given by the receiver report packet), 2) too_late
and 3) nshown. In order to avoid peaks on the output value and to limit the oscillations on the
control algorithm the average of the last sums is performed. We called this value filtered loss.
In the experiments we used the three past reported values for this average.

The output of the QoS monitoring is the filtered loss value that is analyzed by the QoS
control mechanism in order to decide the action to take.

RTCP

RTPRTP data

RTCP Reports
QoS AlgorithmRate,

Q Factor

Sender ReceiverNetwork

4.2. QoS Control

The QoS control algorithm was adapted from [6], [2] and [3]. It must be tuned to achieve
a viable compromise between the need to optimize the use of resources and the stability
required by the application. The algorithm should not change the QoS parameters due to small
variations of the input value because the changes will introduce overload causing even more
changes. On the other hand, the algorithm should not become too insensitive that it can not
adapt to network changes, losing the required dynamic behaviour. Moreover, it should identify
situations when a less severe action could be tried to solve the problem, and if it fails then a
change of QoS level should be performed.

The concrete algorithm tested has three different zones (figure 3) in which the input value
can fall: degradation zone (between λs and 100%); working zone (between λi and λs) and
improvement zone (between 0 % and λi). The values λi and λs are calculated experimentally
and must be given by the QoS Manager for each data type.

Our experiments used MJPEG and the less severe actions consisted on dropping an entire
frame. If the input value rises so quickly that would pass the working zone, entering in the
degradation zone, a QoS change would be triggered immediately. If not, there would be space
to invoke a less severe action assuming that the problem is a transient one.

Figure 3. QoS Control Algorithm

Whenever a change in the QoS parameters is necessary, the algorithm moves through the
QoS scale. It moves downwards if the conditions of the network do not allow the application
to continue using the current QoS, or upwards otherwise, i.e., if the network conditions allow
the application to improve its QoS. More precisely, the control algorithm works as follows:

• When the input value falls into the working zone, the algorithm acts autonomously
discarding a frame once on a while, if necessary. These losses are not noticeable to
the users and constitutes the stable stage of the algorithm.

• When the input value falls into the degradation zone, the algorithm moves
downwards on the scale provided by the application to reduce the volume of data
(changing parameters of the encoding sequence like the quality factors, frame rate,
etc.).

• When the input value falls into the improvement zone, the algorithm moves upwards
on the scale to try to use the resources that the network seems to have available at
the moment.

Degradation and improvement are not symmetrical. A degradation is performed in
principle when a real problem occur. On the other hand, an improvement of the QoS is

Loss (%)

λsλi

RTCP

RTCP REPORT BUFFER

0 100

performed when the current working conditions produce almost no errors; so the algorithm
will try to ask for more. This last solution may cause oscillation of the QoS values, but it is not
a disturbing factor for the users. Another solution would be to measure the real bandwidth
available but that is not simple to do and would require extra load in the machines and
network.

5. Experiments

Some experiments were performed in order to assess the algorithm’s behaviour in different
network and workstation conditions.

The experiments consisted of video images, with a fair amount of movement and some
detail, encoded in JPEG. The experimental network consisted on an ATM switch, Sun stations
and Parallax JPEG video compression/decompression boards. The QoS scale had the following
nine levels (frame rate, quality factor): [(25, 50), (22, 50), (19, 50), (25, 75), (22, 75), (19,
75), (25, 100), (22, 100), (19, 100)]. The threshold values chosen for both experiments were λi

= 5% and λs = 15%.

5.1. First Experiment

The goal of this experiment was to monitor the performance of the algorithm in normal
working conditions (both of the network and the workstations). The network was not a critical
resource and the size of the images were enlarged too much as to produce overload on the
workstation. Each frame had to be transported by, at least, two transport segments and a rate
of 25 fps produced a load higher than the receiving machine could cope with (the receiving
machine is less powerful than the sending machine). Figure 4 illustrates the results. During the
first part of the experiment, artificial load was introduced to the receiving machine.

Figure 4. First Experiment

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300

Time (s)

L
o

ss
 (

%
)

0

50

100

150

200

250

300

350

400

450

500

B
an

d
w

it
h

 (
K

b
p

s)

LOSS FILTERED LOSS BANDWITH

The initial QoS level chosen was too high and the system moved very quickly to the lowest
level (level nine). At t=50s it improved a little bit but the losses start to rise and the system
moved downwards again. At t=105s it made a second attempt to go to level eight but it happen
the same thing as before. Typically, the stable point would be between level eight and nine,
very close to level nine. This behaviour happened again some more times and around t=195s
the extra load on the workstation ceased to exist. The system moved to level one at t=260 but
not continuously (i.e., there were some oscillations around level five and again around level 3).
These oscillations were due to the effects of changing the parameters on such a heavy system
(due to the image size). Level one was clearly to high and the system got stable around level
five. The figure shows the attenuating effect of the average losses, and the increase of the
bandwidth each time a new level is tried. The total amount of the bandwidth is not so great, as
the system’s bottleneck are the machines. It is also important to refer that the RTP was
implemented as a user process so some inefficiencies exist.

5.2. Second Experiment

To assess the algorithm’s behaviour for different network conditions, artificial losses were
introduced on the network (at the sender’s side). The experiment started with a bandwidth
limitation of 350 Kbps. At t=120s it was reduced to 277 Kbps, and again to 229Kbps at
t=180s. There was a final reduction to 182 Kbps at t=260s and, after that, two increases: one
to 230Kbps at t=350s and another to 350Kbps at t=450s. The video image size was smaller
than the one used for the first experiment.

Figure 5. Second Experiment

Figure 5 shows the results of the experiment. This time, the initial level was too low and a
series of improvements were performed. The system moved quickly to level one (t=30s) and

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500 550

Time (s)

L
o

ss
 (%

)

0

50

100

150

200

250

300

350

400

450

500

B
an

d
w

id
th

 (K
b

p
s)

LOSS FILTERED LOSS BANDWIDTH

could have gone higher if the scale allowed it. When the bandwidth was reduced the losses
started to rise and the system went down to level three. It remained more or less at this level
after the reduction at t=180 (although the losses started to rise slowly). When the final
reduction was performed the system went down all the way to level nine. At this point, it
would have gone lower if it could. The application should have been notified that the lowest
level was reached and should have reacted by terminating the connection or providing a new
scale. This part of the algorithm was not implemented so the system had to remain at level
nine. The consequence is that the algorithm is virtually not working and the losses start to rise
without control. This is clear in the figure. When the bandwidth was increased, the system
moved to level five, and after the second increase to level one, increase the used bandwidth.

6. Related Work

[15] provides a survey about QoS on distributed multimedia systems. They single out a
proposal [10] to handle our Programming level QoS parameters based on “Quality Query by
Example” to make the user choose the QoS without caring for the meaningless (to him)
System level QoS parameters.

The dynamic QoS adjustment mechanism described in [2] has strong similarities to our
own but no QoS management architecture is proposed (the algorithm is part of the
application). The sending application uses RTCP receiver report packets to compute packet
losses. Based on this measure the available bandwidth is determined and the QoS is adjusted to
that value. The algorithm is similar to the one proposed in this paper although ours takes not
only packet loss in consideration but packet delays as well in order to measure the available
bandwidth. This means that we not only consider the network conditions as [2] does, but also
the end machines load conditions.

[3] proposes an abstract architecture for QoS handling called QoS Architecture (QoS-A).
[4] proposes a layer that is part of this architecture, called "multimedia enhanced transport
system" (METS), in order to manage QoS for the application. This approach is similar to ours
although our architecture is more complex and can handle completely multimedia data for the
application and not just to adjust QoS. [4] also proposes an algorithm similar to ours but that
does not use RTP/RTCP.

A specific scheme to control network congestion based on bit and packet rate scaling, i.e.,
QoS degradation, in a system without bandwidth reservation is focused in [14]. The key
problem treated is to find sustainable acceptable values for the QoS during a congestion. The
algorithm is similar to the one we studied although the end hosts situation is not considered.
Also no architecture is proposed.

In [11] a flexible architecture for QoS establishment is proposed. The system takes into
account application, network and operating system concepts and a QoS broker calculates their
best balance to provide the desired QoS. It is mainly a configuration solution than an on-going
control schema, and requires too much from the environment (real-time OS, scheduler policies,
etc). There is also a mapping from application QoS parameters to network ones, but it has little
change of meaning between the two.

The subject of QoS has also been a topic of standardization. The ISO standard [9] defines
a "QoS framework". It describes how QoS can be characterized and QoS restrictions specified.
A set of mechanisms for QoS management are identified. A list of QoS parameters is also
given. Our algorithm can be thought as an implementation of the generic mechanism they
propose for QoS control. No architecture is proposed.

A question related to the QoS control of this paper is receiver-dependent QoS for
multicast. The problem, treated in [7], is how to deliver different levels of QoS to different
receivers using multicast. Our algorithm can not be used in that case because it is the sender
that adjusts the sending rate to the overall system situation. For multicast the QoS would have
to be imposed by the receiver in the worst situation (for example, connected to the sender by
the lower bandwidth network path), what is not acceptable. [7] proposes a solution based in
filters that adjust the QoS of the media being sent to each receiver or group of receivers
situation. This question is orthogonal to the problem we studied.

Another related aspect, more media specific, is the challenge to maximize the QoS of an
MPEG stream. The proposals presented in [8] and [12] perform that task by scheduling the
MPEG frames according to their relevance for the receiver (higher priority to I frames, and
lower to B). The user has a lower perception when a lower priority frame is discarded so they
are discarded first, when some action is needed. We did not consider these questions (nor even
MPEG) but some of the ideas of these papers could be used to extend our algorithms for that
media format.

7. Conclusions

The QoS control for distributed multimedia applications has to take into consideration
several aspects and applications should be shielded as much as possible from this complexity.
The issue is not that simple because multimedia data has very different requirements depending
on the specific medium. A flexible framework is thus the best approach in order to be extended
with different modules as signal processing improves. The framework should handle the
problem the best it can without imposing too many restriction on the environment (operating
system, device drivers) to avoid becoming useless. The proposal presented here has the
advantage of working by monitoring, and not by strict interaction with the environment
(bandwidth reservation), making it suitable to work within many existing environments.

With respect to the algorithms we believe that the best approach is an integrated one that
includes the sender and the receiver machines as well as the network. This is visible in this
paper in the integration of the transport entity with the application and in the fact that the
closed loop control mechanism takes the end machines load into consideration. Another
important feature is the ability of the applications to express its requirements using concepts
that are more meaningful than the usual low-level classical parameters.

Experiments have shown that the mapping between these concepts and the low-level ones
can be achieved successfully and the subjective evaluation have shown that users notice jumps
on the quality of the session but it is not a major distracting factor.

As a topic for further work the use of this kind of algorithms in multicast configurations
will be studied.

8. Bibliography

1. Antunes N., Rocha R., Pinto P. (1997). “Analysis and Simulation of a Traffic Management Control
Scheme for ATM Switches with Loose Commitments” , Int. Conf. On Networks and Distributed Systems
Modeling and Simulation, Phoenix, 1997, ftp://mariel.inesc.pt/pub/papers/cndsmsc97.ps.gz

2. Busse I., Deffner B., Schulzrinne H. (1995). “Dynamic QoS Control of Multimedia Applications based
on RTP” , Computer Communications, Vol. 19, Number 1, Jan. 96

3. Campbell A., Coulson G. (1996). “A QoS Adaptive Transport System: Design, Implementation and
Experience” , ACM Multimediá 96, Boston, 1996, 117-127

4. Campbell A., Coulson G., Hutchison D. (1994). “A Quality of Service Architecture” , ACM SIGCOMM
94, Computer Communication Review, Vol.24, April 1994, 6-27

5. Clark D., Tennenhouse D. (1990). “Architectural Considerations for a New Generation of Protocols” ,
ACM SIGCOMM 90, Philadelphia, 1990, 200-208

6. Correia M., Pinto P. (1995). “Low-Level Multimedia Synchronization Algorithms on Broadband
Networks” , ACM Multimediá 95, San Francisco, 1995, 423-434,
ftp://mariel.inesc.pt/pub/papers/mm95.ps.gz

7. Garcia F., Hutchison D., Mauthe A., Yeadon N. (1996). “QoS Support for Distributed Multimedia
Applications” , Proceed Int. Conf. in Distributed Processing (ICDṔ 96), Dresden 1996

8. Han C., Shin K. (1995). “Scheduling MPEG-Compressed Video Streams with Firm Deadline
Constraints” , ACM Multimediá 95, San Francisco, 1995, 411-422

9. ISO/IEC JTC1/SC21, (1995).“ Information Technology – Quality of Service Framework – Final CD” ,
July 1995

10. Kalkbrenner G. et al. (1994). "Quality of Service (QOS) in Distributed Hypermedia Systems", Proc. 2nd

Int´l Workshop on Principles of Document Processing, 1994.

11. Nahrstedt K., Smith J. (1995). "The QoS Broker", IEEE Multimedia, Spring 1995

12. Riley M., Richardson E. (1994). “Minimizing the Effect of Cell Losses on MPEG Video” , BRIŚ 94,
Hamburg 1994, 491-494

13. Schulzrinne H., Casner S., Frederick R., Jacobson V. (1996). “RTP: A Transport Protocol for Real-Time
Application” , (RFC 1889) January 1996

14. Talley L., Jeffay K. (1994). "Two-Dimensional Scaling Techniques for Adaptive, Rate-Based
Transmission Control of Live Audio and Video Streams", ACM Multimediá 94, S. Francisco, 1994

15. Vogel A., Kerhervé B., Bochmann G., Gecsei J. (1995). “Distributed Multimedia and QoS: A Survey” ,
IEEE Multimedia, Vol.2, Numb2, 1995

