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Abstract

The routing strategy is an important issue in Vehicular ad hoc Networks since the shared nature of the wireless

medium, the time-varying capacity of the links and the highly dynamic network topology due to vehicle’s mobility

severely restrict the choices available for the creation of the paths. These issues influence the availability of the path

and its long-term duration.

In this report we present a performance analysis of XOR1-based flat routing protocols in high mobility conditions,

considering a vehicular ad hoc network (VANET) formed in a highway scenario. First, we propose an XOR-based

protocol that incorporates several adaptations of the existing XOR-based routing algorithms, in order to cope with the

network mobility. Then we propose an improved version of it, XORi, which modifies the protocol’s information

gathering process to accommodate the specific dynamic nature of VANETs topology. Finally, we evaluate the

performance of XOR-based protocols with other topology-based routing protocols. Simulation results allow us to

characterize the performance of this class of protocols through the comparison of the packet delivery ratio, end-to-

end path delay and average number of path hops2. When a moderate density of nodes is considered, simulations show

that XOR-based algorithms achieve almost the same packet delivery rate as link state algorithms, such as OLSR,

while for high density of nodes XOR-based algorithms scale better in terms of delay when compared to source routing

algorithms, such as DSR.

Keywords: XOR-based Routing Protocols, Flat Routing Protocols, Vehicular ad hoc Networks.

1 Exclusive-or logical operator.
2The source code of the simulated XOR-based protocols was written for the network simulator ns-2.34 and is available to download at

http://tele1.dee.fct.unl.pt/people/rado/html/downloads .html, allowing the community to evaluate their own scenarios

and compare it with other protocols.
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I. INTRODUCTION

Vehicular ad hoc Networks (VANETs) are rapidly becoming a reality since several organizations are supporting

standardization activities that will enable a variety of applications such as safety, traffic efficiency and infotainment.

VANETs are self-organized networks where the level of node’s mobility is generally higher and the mobility is

constrained by the roads. Due to the fast change of the topology, VANETs demand for routing protocols able to

provide high packet delivery rate and low end-to-end packet delivery delay.

Generally the routing protocols that have been proposed for VANETs can be classified into three basic groups

[1]: unicast position-based, unicast topology-based or group-based multicast and broadcast.

In unicast position-based routing protocols [2], the nodes do not needed to store any route or routing table to

the destination. Instead, the nodes use the location of their neighbors and the location of the destination node to

determine the neighbor that forwards the packet. Therefore, these routing schemes require information about the

position of the nodes, which is a drawback because of the cost of disseminating this information across all VANET

nodes.

In topology-based protocols the nodes need to store routing tables or routes that depend on the topology. This

class of protocols include the well known Ad hoc On-Demand Distance Vector Routing (AODV) [3], Optimized

Link State Routing (OLSR) [4] and others (DSDV [5], DSR [6], TORA [7], FSR [8]). These protocols pose great

challenges in VANETs, since the mobility of the nodes causes frequent topology changes: usually they continuously

maintain up-to-date routes for valid destinations and require periodic updates to reflect network topology changes.

This requirement can lead to high bandwidth consumption, which can be alleviated by some optimization processes,

such as the MultiPoint Relay (MPR) scheme used in [4].

Group-based multicast and broadcast protocols are designed to route packets from one node to multiple destina-

tions. Since this work considers unicast routing (packets destined to a given node), we do not introduce this class

of protocols in this report.

XOR-based flat routing algorithms, such as the ones described in [9], [10] and [11] have been proposed for wired

networks. These protocols do not rely neither on the network topology nor on the location of the nodes. Instead,

they use a metric based on the logical XOR operation between the identifiers of the network nodes, which is solely

used to route the packets. This class of routing protocols is completely decoupled from the actual topology and

state of the network: the routing mechanism is “blinded” in the sense that it only uses the information related with

the identifiers of the nodes, independently of any other metric, as is the case with topology-based or position-based

protocols. XOR-based protocols are proposed to solve the scalability problems usually faced in both topology or

position-based protocols, such as:

• most of these protocols store information about active routes or about every node addressable in the network,

limiting the scalability of the protocols when the number of network nodes increase;

• most of these protocols may have to broadcast queries through most of the network before the desired route

is found, which limits their scalability and introduces large amounts of routing traffic overhead.
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In this work we evaluate the performance of XOR-based routing protocols considering a high mobility application

scenario such as highways, to provide the deployment of comfort applications (e.g. onboard games and video/music

file sharing). First, we propose an XOR-based protocol that incorporates several adaptations of the existing protocols

in order to handle the node’s mobility. Then we propose a second improvement, which modifies the protocol’s

information gathering process to accommodate the dynamic nature of VANET’s topology. Finally, we evaluate the

performance of XOR-based protocols with other topology-based routing protocols, characterizing their performance

through the comparison of the packet delivery ratio, end-to-end path delay and average number of path hops. As

far as we know this is the first work that analyzes the performance of XOR-based routing protocols in a VANET

scenario.

The rest of the report is organized as follows. Section II describes the traditional XOR-based routing architecture

and some of the adaptations need to handle node’s mobility. In Section III we propose an improvement of the

traditional XOR-based protocols, which modifies the protocol’s information gathering process. Section IV presents

and discusses the experimental results. Finally, some concluding remarks are given in section V.

II. XOR-BASED ROUTING: SYSTEM DESCRIPTION

XOR-based routing algorithms use n−bit identifiers of the network nodes, which can represent their addresses

at the network layer, to build the routing tables and to route packets through the network. Its routing principle

uses the distance between two identifiers a and b as their bitwise exclusive or (XOR), which is represented by

d(a, b) = a ⊕ b, being d(a, a) = 0 and d(a, b) > 0,∀a, b. Given a packet originated by the node owning the

identifier x and destined to the node with the identifier z, and denoting Y as the set of identifiers contained on x’s

routing table, the XOR routing algorithm applied at node x selects the node y ∈ Y that minimizes the distance to

z, which is expressed by the following routing policy

R = argmin
y∈Y

{d(y, z)} . (1)

The routing policy R routes each packet to a node y that guarantees the minimum distance to the destination z. In

the rest of the report we refer to node x as the node which owns the identifier x.

Each node maintains a table, previously referred as routing table, where the available knowledge about its neighbor

nodes is stored. The table, exemplified in Table I, is organized in n columns denominated buckets and represented

by βα, 0 ≤ α ≤ n−1. Each time a node a knows a novel neighbor b it stores that information in the bucket βn−1−i

given by the highest i that satisfies the following condition3

d(a, b) div 2i = 1, a 6= b, 0 ≤ i ≤ n− 1. (2)

If we use 4-bit identifiers (n = 4) and admitting a = 1001 and b = 1010, the distance d(a, b) = 0011 and the

highest i that satisfies the condition (2) is i = 1, concluding that the identifier b = 1010 should be stored in the

bucket βn−1−i = β2. In other words, condition (2) denotes that node a stores the identifier of node b in the bucket

3div denotes the integer division operation on integers.
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βn−1−i, where n− 1− i is the length of the longest common prefix between the identifier of node a and node b.

This can be observed in Table I, where the buckets β0, β1, ..., β3 store the identifiers having a common prefix of

length 0, 1, ..., 3 with node 0001. The way how the information about the identifiers is stored in the buckets is one

of the advantages of XOR-based algorithms. This is because a node only has to know about n of the possible 2n

nodes available in the network to successfully route a packet.

TABLE I

HYPOTHETIC ROUTING TABLE OF THE NODE 0001 USING 4-BIT IDENTIFIERS.

β0 β1 β2 β3

1000 0100 0010 0000

1010 0101

1100

A node a can know b from two distinct ways: a discovering process in which the nodes actively search for

neighbors to fill the buckets; a learning process where a node uses the packets received to add more information

to the buckets in a costless passive fashion.

“XOR” algorithm will be used throughout this report to designate the algorithm that incorporates the concepts

presented in this section.

A. Discovering Process

In the discovering process a node always knows its physical neighbors, since a HELLO message is broadcasted

by each node at frequency fH Hz. Each physical neighbor node discovered is then stored in the bucket having the

greatest i that solves the condition (2).

While a node stills having one of the buckets βα empty, it actively searches for neighbors that can fill the bucket.

Since such neighbors are not physically connected, they are denominated virtual neighbors. A node starts to send

a QUERY message describing the empty buckets, which is sent to its neighbors already stored in the buckets (in the

initial step the buckets only contain physical neighbors). The neighbor nodes that receive the QUERY and have at

least a neighbor that fills in one of the requested buckets, answers with a RESPONSE message. After receiving the

RESPONSE a node stores the discovered virtual neighbors in its buckets. New queries are sent to the discovered

neighbors if at least one of the buckets is still empty.

The queries are limited in range to Kh hops far away from the query’s originating node. The neighbors stored

in the buckets are deleted after Tβ seconds due to the high degree of mobility of the nodes. When the queries sent

to all neighbors do not originate any response, a node repeats the QUERY sending process after TQ seconds.
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B. Routing and Forwarding

Since a node can route a packet to a neighbor node that can be k−hops away, we distinguish the notion of

routing and forwarding.

Each time a node receives a packet not destined to him, it tries to route it by applying the routing policy R.

The routing process starts by identifying the bucket that should be used. Considering that node a receives a packet

destined to b, it defines the bucket βα to use by applying the condition (2). Then node a routes the packet to

the node that is closest to node b. In other words, the packet is routed to node nR, which is selected by node a

computing the following solution

nR = argmin
id∈βα

{d(id, b)} , (3)

where id represents each one of the identifiers contained in the bucket βα.

Since nR is the identifier of a node that can be a virtual neighbor k−hops away (k > 1), node a must know how

to forward the packet to the node nR. This example is illustrated in Figure 1. Since node a must route the packet

to node nR, it forwards the packet to its physical neighbor g. Node a knows that it must forwards the packet to

node g because when it receives the RESPONSE from node nR, node a stores the node nR associated with the

physical neighbor from which it was received (node g). Thus each identifier contained in a bucket has an associated

physical neighbor (node g), which is used to forward the packet to the node chosen by the routing algorithm (node

nR).

1 2 3 4 5QUERY

RESPONSE

QUERY

RESPONSE

QUERY
QUERY

QUERY

RESPONSE

RESPONSE

RESPONSE

a g nR h bPhysical
neighbors

Physical
neighbors

Physical
neighbors

Physical
neighbors

Virtual neighbors Virtual neighbors

Fig. 1. Routing/forwarding example.

When the packet arrives at g, it performs an XOR operation to define the bucket in which the next hop must be

taken and, as a consequence of the routing tables building process, node g is able to find node nR in the defined

bucket. In this case, the flat routing decision is identical to the physical forwarding action (to send the packet to

node nR). Once node nR receives the packet, it is the node pointed by the previous routing decision as progress

in the flat identity space, i.e., the node in which the packet can walk, at least, one bit towards the destination. In

this case, node nR defines the bucket and finds the destination node b in its routing table towards the interface

connected to node h. Consequently, all the possible progress in the flat identity space towards the destination node

is done and the remaining action is to forward the packet to the physical neighbor node h that, in its turn, will

deliver the packet to node b.
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C. Learning Process

Figure 2 motivates the learning process, where node 1 sends a QUERY to node 2, and node 2 sends back a

RESPONSE informing node 1 about the existence of node 3. In the same way, node 1 queries the nodes 3, 4 and

5 until filling all its buckets. The learning process takes place when nodes 3, 4 and 5 receive the QUERY from

node 1 and from that instant they know node 1 in a passive way, learning about its existence. Following the same

rationale, when node 5 sends back a RESPONSE to node 1, both nodes 3, 2, and 1 learn about its existence. Thus

the learning process takes place when a node receives a QUERY or a RESPONSE message. The node receiving the

message verifies if the identifier of the source node is already stored in its table. If is not the case, the identifier

of the source node can be stored in a bucket if the information does not originates the count-to-infinity problem,

avoiding loops formation in the packet forwarding stage.

1 2 3 4 5

QUERY

RESPONSE

a g nR h bPhysical
neighbors

Physical
neighbors

Physical
neighbors

Physical
neighbors

Virtual neighbors Virtual neighbors

QUERY

RESPONSE

QUERY

RESPONSE

QUERY

RESPONSE

Fig. 2. Motivation example of the learning process.

The use of time-limited neighbor entries in the buckets can originate a count-to-infinity. Suppose that node 3

learns that node 1 exists by receiving its QUERY forwarded by node 2. Node 3 deletes the identifier 1 from its

bucket after Tβ seconds. If the bucket does not contain more identifiers, the node will send new QUERY messages

to all its neighbors, since it needs to fill the empty bucket. Now suppose that node 4 also knows about node 1,

since node 1 have previously sent QUERY messages to it and to node 5. When node 3 queries its neighbors, node

4 will answer that it knows node 1, but the path to reach node 1 also includes node 3.

The queries and the responses originated by each nodes are univocally identified by the source node, destination

node and a given incremental identifier. Each node updates its cache with the univocal identifier of the QUERY

or RESPONSE from which it learned. All the identifiers of received queries or responses are cached as well. The

count-to-infinity problem is solved by verifying if the information requested by a node was previously seen by the

same node. In the former example node 4 informs node 3 that it knows node 1, but the RESPONSE includes the

univocal identifiers of the QUERY from which node 4 learned about node 1. By receiving that information node 3

also verifies that it caches the same QUERY univocal identifiers, so it rejects this information and does not stores

node 1 in the bucket, avoiding the count-to-infinity problem.
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III. XOR-BASED ROUTING: IMPROVEMENTS FOR VANETS

This section presents XORi algorithm, which is an improvement of XOR algorithm presented in the last section.

XORi is more suited for high mobile networks, such as VANETs.

A. Main Improvements

As described in the last section, in the beginning of the routing table building process a node starts to query all

its neighbors about the required information to fill its buckets. This is not a good practice in wireless networks,

since it decreases the network capacity. XORi maintains the same rationale as XOR algorithm, except it proposes

the following changes:

• instead of starting to query all neighbors, in XORi a node only interrogates a single node (denominated

Broadcast Group Leader - BGL) selected by the node that originates the QUERY.

• a node only interrogates all its neighbors when it has not previously selected a BGL node.

While this practice decreases the network load, if BGL nodes are properly selected according to the network motion,

they can form a set of nodes that contains more information. This is because BGL nodes are interrogated more

frequently than any other nodes and, since the learning process is used, the probability of storing more information

in their buckets increase.

As BGL nodes will own more information in its buckets, and since the nodes are mobile, they should be selected

BGLs for the longest time in order to increase the performance of its usage. This is explained by the fact that if

selected BGL nodes are often changing, they are interrogated less times, and they will have less information. Since

the mobility environment considered in this work is a highway, a BGL node should be the neighbor node which

maintains the longest link longevity. In the next subsection we describe the algorithm used to select BGL nodes.

B. Broadcast Leader Selection Algorithm

This algorithm uses the HELLO messages previously described, and is computed every time a new HELLO

message is received from a neighbor node. Each node selects a single BGL.

In the time instant ti(ny), when the node na firstly receives an HELLO packet from it’s neighbor node ny , an

unidirectional logical link is created between the nodes. The link is maintained since ny periodically transmits

beacons with period TB = 1/FH . The duration of the logical link can be quantified by its stability value: the

stability η(ny) measures the duration of the logical link between the nodes na and ny in periods of beacons. η(ny)

is computed by the node na at instant t by applying the following expression

η(ny) = 1 + (t− ti(ny)) div TB . (4)

A logical link is said to be stable if it last longer than a given kest value: η(ny) ≥ kest. The neighbors with which

a node maintains stable links (stable neighbors) are more suitable to be BGL nodes, because these nodes sense less

link breaks. We denote by ξ(na) the BGL node selected by the node na.
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Representing the physical neighbors of na by Na and admitting that na knows the BGL nodes selected by its

physical neighbors (ξ(ny),∀ny ∈ Na - which is contained in each Hello packet received from each ny ∈ Na and

stored in the beacon table jointly with η(ny)), na selects its own BGL by applying the Algorithm 1.

Input : Na, η(ny) (∀ny ∈ Na), ξ(ny) (∀ny ∈ Na), ti(ny) (∀ny ∈ Na)

Output : ξ(na)

ηmax ⇐ return max η from beacon table()1

address ⇐ MAX INT2

ξaux ⇐ -13

transient threshold ⇐ 14

if stable node(na) then /* R1 - if this node is stable */5

for each neighbor ny ∈ Na do6

insert sorted(ξ(ny), list BGL) /* lower addresses in the head of the list */7

if (na is BGL) then8

insert sorted(na, list BGL)9

for each ξy ∈ list BGL do /* ξy is removed from the head of the list */10

for each neighbor ny ∈ Na do11

if (ny = ξy) and stable node(ny) then /* R4 - select a neighbor that already is BGL */12

ξaux ⇐ ny13

14

if (ξaux 6= −1) then /* BGL already selected */15

break16

if (na = ξy) then /* R3 - auto-selection */17

ξaux ⇐ na18

break19

20

if (ξaux = -1) then /* R2 - its neighbor becomes a new BGL */21

for each neighbor ny ∈ Na do22

if (ηmax − η(ny)− transient threshold ≤ 0) and (ny < address) then23

address ⇐ ny24

ξaux ⇐ ny25

26

27

28

ξ(na) = ξaux29

Algorithm 1: Algorithm used by the generic node na to select its Broadcast Group Leader ξ(na).

The algorithm rules R1-R4 are summarized as follows:

R1 - when na is unstable (meaning that na does not have stable neighbors) it does not select any BGL;

R2 - when none of na’s neighbors (ny ∈ Na) had previously selected a BGL, na selects the neighbor having the

smaller address from the set of the neighbors with which na has the biggest stability value;

R3 - na selects itself as a BGL when na is already a BGL node (previously selected by a neighbor) and the

neighbors’s BGL have higher addresses than na;

R4 - when na is not selected BGL by its neighbors and there exists at least one neighbor ny that is already a

BGL, na selects the node ny as its own BGL; ties are broken by choosing the smaller address neighbor;

The first BGL node selected in the network is justified by the application of the rule R2. The rule R4 is defined
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to merge several BGLs selected by different nodes at 1-hop radius. The rule R3 is also used to merge several BGL

in the special case when na must selects itself as a BGL.

Since the mobility scenario considered in this work is the same as considered in [12], we adopted the same

parameterizations in this work (kest = 50, TB = 1s).

IV. SIMULATIONS AND PERFORMANCE RESULTS

A. Mobility Model

The VANETs simulated in our evaluation scenarios were obtained using the Trans tool [13], which integrates

the SUMO traffic simulator [14]. We have simulated a segment of a straight line highway with 3 lanes in each

direction. The simulations start with the vehicles moving in both sides of the highway. During the simulation we

launch more vehicles to maintain a constant density of nodes in the network. The highway segment is 10 kms long,

which limits the minimum number of the network hops to cover the full highway segment to 10, as all vehicles are

assumed to have a radio range of 1000 meters. We defined three different classes of vehicles, which are described

in the table II. 60% of the vehicles belong to the class1, which represents medium size cars. The vehicles of class2

represents 25% of the highway traffic. Finally we define 15% of vehicles of class3, which represents long sized

vehicles such as trucks. Regarding the vehicle’s density, denoted by ρ, we defined 4 different scenarios, described

in the table III.

TABLE II

CLASSES OF TRAFFIC CONSIDERED IN THE SIMULATIONS.

vehicle’s VMAX acceleration deceleration %

length (m) (m/s) (m/s2) (m/s2)

class1 4 27.8 3.6 3.6 60

class2 5 26.0 2.5 3.0 25

class3 8 20 1.5 2.0 15

TABLE III

VEHICLE’S DENSITIES CONSIDERED IN THE SIMULATIONS.

number of average number simulation

vehicles of neighbors (ρ) time (s)

Scen4 80 4.0 747

Scen6 120 6.0 727

Scen8 160 8.0 772

Scen10 200 10.0 805
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B. Simulation Description

The simulations compare the performance of XOR algorithm (described in Section II) and XORi (presented in

Section III) with OLSR, AODV and DSR routing protocols. We used the simulator ns-2 [15] configured with the

standard IEEE 802.114.

The vehicles moving in the same left-to-right direction generate packets, which are randomly destined to one of

the active mobile nodes. The vehicles moving from right-to-left do not generate packets but are able to forward

them. The number of packets generated on each density scenario was maintained constant at approximately 3000

packets. The parameterizations used in XOR and XORi algorithms were: fH = 1Hz; Kh = 5hops; Tβ = 5s;

TQ = 5s; TB = 1s. All simulation results presented were obtained within 95% of confidence interval.

C. Performance Results

Table IV shows the packet delivery ratio for all simulated protocols and for different node densities (ρ). As can

be seen XOR and XORi exhibit approximately the same packet delivery ratio, which is very similar to the OLSR

protocol. This allow us to conclude that the changes performed in XORi does not have a significant impact on the

packet delivery ratio. AODV and DSR protocols present higher packet delivery ratios due to the on-demand nature

of AODV and the pure flooding used in DSR.

TABLE IV

PACKET DELIVERY RATIO [%].

ρ XOR XORi OLSR AODV DSR

4 43.0 42.0 44.5 65.8 97.7

6 45.3 48.6 46.8 67.9 97.0

8 55.6 52.4 47.5 69.0 97.4

10 49.2 50.3 45.6 71.0 96.9

Other important metric is the average end-to-end delay between the source and destination node. Table V presents

end-to-end delay for the same simulations reported in Table IV. While DSR presents the highest delivery ratio, it

is the worst protocol in terms of end-to-end delay. This is mainly because it floods the entire network to set up the

path. Note that the highest delay value is achieved for the case when a nodes has in average 4 physical neighbors

(low density), and this is due to overloaded links that are the unique choices available to route packets between

partitions of nodes (lack of path diversity). DSR does not scale, because for higher node densities (e.g. 20 nodes,

which is not presented in the tables) the delay increases rapidly while the packet delivery ratio is the smallest one

for all simulated protocols. This fact explains why we did not present simulations for density values higher than 10

neighbors, since DSR becomes unstable. AODV performs better than DSR, and OLSR presents the lowest delay

411 Mbps and 2 Mbps were used to transmit unicast and broadcast traffic, respectively.
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from all simulated protocols. Note that XOR suffers from a similar problem found in DSR: when the number of

physical neighbors increase the delay grows very fast. As can be observed, the use of BGLs in XORi decreases

the network load, which in turn decreases the end-to-end delay due to the smallest number of generated queries.

TABLE V

PATH END-TO-END DELAY [ms].

ρ XOR XORi OLSR AODV DSR

4 32.6 5.0 2.7 5.8 180.8

6 20.7 5.0 3.2 8.3 103.8

8 108.4 9.3 3.7 9.3 80.0

10 215.4 18.9 4.3 10.8 107.5

Table VI indicates the average length of the paths measured in number of hops. This metric indirectly indicates

the path duration, since the probability of path break increases with the number of path hops. While DSR and AODV

are more susceptible to path breaks due to longer paths in terms of hops, XOR and XORi are less susceptible and

its average path length is between DSR/AODV and OLSR.

TABLE VI

AVERAGE PATH LENGTH [HOPS].

ρ XOR XORi OLSR AODV DSR

4 2.79 2.73 2.33 3.79 4.88

6 2.72 2.99 2.46 3.92 5.02

8 3.42 3.48 2.43 4.04 5.31

10 3.02 3.32 2.41 4.06 5.38

In a nutshell, the results presented in this section show that XOR and XORi have approximately the same

performance as OLSR in terms of packet delivery ratio. The improvements presented in XORi marginally decrease

its packet delivery ratio face to the XOR algorithm, namely for low density of nodes. But in terms of end-to-end

delay the gain evidenced by XORi compensates the marginal loss in terms of packet delivery ratio.

V. CONCLUSIONS

This report presents a performance analysis of XOR-based flat routing protocols in high mobility conditions,

considering a vehicular ad hoc network formed in a highway scenario.

Simulation results show that traditional XOR-based algorithms can have approximately the same performance as

OLSR in terms of packet delivery. In terms of end-to-end delay, XOR-based routing exhibit better end-to-end delay

for low density scenarios when compared to source routing algorithms and the improvements proposed in XORi

algorithm can significatively decrease the end-to-end delay.
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Further work will explore new features capable of decreasing the end-to-end delay and increasing the packet

delivery ratio, such as the use of Bloom filters (used in [11]) and novel schemes to fill and maintain the information

in the buckets.
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