
Spotlight

Unraveling the
Web Services Web
An Introduction to SOAP,
WSDL, and UDDI

O ver the past few years, businesses have
interacted using ad hoc approaches that
take advantage of the basic Internet infra-

structure. Now, however, Web services are emerg-
ing to provide a systematic and extensible frame-
work for application-to-application interaction,
built on top of existing Web protocols and based
on open XML standards.

Say, for example, that you want to purchase a
vacation package using an online travel agent. To
locate the best prices on airline tickets, hotels, and
rental cars, the agency will have to poll multiple
companies, each of which likely uses different,
incompatible applications for pricing and reserva-
tions. Web services aim to simplify this process by
defining a standardized mechanism to describe,
locate, and communicate with online applications.
Essentially, each application becomes an accessible
Web service component that is described using open
standards. An online travel service could thus use
the same Web services framework to locate and
reserve your package elements, as well as to lease
Internet-based credit check and bank payment ser-
vices on a pay-per-use basis to expedite fund trans-
fers between you, the travel agency, and the vendors.

The Web services framework is divided into
three areas — communication protocols, service
descriptions, and service discovery — and specifi-
cations are being developed for each. In this arti-
cle, we look at the specifications that are current-
ly the most salient and stable in each area:

� the simple object access protocol (SOAP,
www.w3.org/2000/xp) which enables commu-
nication among Web services;

� the Web Services Description Language (WSDL,
www.w3.org/TR/wsdl.html), which provides a
formal, computer-readable description of Web
services; and

� the Universal Description, Discovery, and Inte-
gration (UDDI, www.uddi.org) directory, which
is a registry of Web services descriptions.

At this point, Web services technology is still
emerging, and researchers are still developing
important pieces, including quality of service
descriptions and interaction models. Because the
Web services framework is modular, however, you
can use just the parts of the stack you need. There-
fore, developers can take advantage of the avail-
able specifications and tooling now and incorpo-
rate more modules as the technology matures.

Communication: SOAP
Given the Web’s intrinsically distributed and het-
erogeneous nature, communication mechanisms
must be platform-independent, international, secure,
and as lightweight as possible. XML is now firmly
established as the lingua franca for information and
data encoding for platform independence and inter-
nationalization. Building a communication protocol
using XML is thus a natural answer for Web services.

Enter SOAP, which was initially created by
Microsoft and later developed in collaboration with
Developmentor, IBM, Lotus, and UserLand. SOAP
is an XML-based protocol for messaging and
remote procedure calls (RPCs). Rather than define
a new transport protocol, SOAP works on existing
transports, such as HTTP, SMTP, and MQSeries.

At its core, a SOAP message has a very simple

86 MARCH • APRIL 2002 http://computer.org/internet/ 1089-7801/02/$17.00 ©2002 IEEE IEEE INTERNET COMPUTING

Francisco Curbera, Matthew Duftler, Rania Khalaf,William Nagy,
Nirmal Mukhi, and Sanjiva Weerawarana • IBM T.J.Watson Research Center

structure: an XML element with two child ele-
ments, one of which contains the header and the
other the body. The header contents and body ele-
ments are themselves arbitrary XML. Figure 1
shows a SOAP envelope’s structure.

In addition to the basic message structure, the
SOAP specification defines a model that dictates
how recipients should process SOAP messages. The
message model also includes actors, which indi-
cate who should process the message. A message
can identify actors that indicate a series of inter-
mediaries that process the message parts meant for
them and pass on the rest.

Messaging Using SOAP
At the basic functionality level, you can use SOAP
as a simple messaging protocol. Throughout this
article, we’ll illustrate the Web services specifica-
tions using a simple example drawn again from the
travel services industry. Our traveler, Joe, is sched-
uled for an afternoon flight and wants to checkin
electronically. We’ll assume that Joe knows of a
service with an electronic CheckIn method and that
he knows the format for encoding the ticket. Given
this, he could simply create and send a SOAP mes-
sage to that service for processing.

Figure 2 shows such a SOAP message, carried by
HTTP. The HTTP headers are above the SOAP:Enve-
lope element. The POST header shows that the mes-
sage uses HTTP POST, which browsers also use to
submit forms. Following the POST header is an
optional SOAPAction header that indicates the mes-
sage’s intended purpose. If there were a response,
the HTTP response would be of type text/xml, as
declared in the Content-Type header, and could
contain a SOAP message with the response data.
Alternatively, the recipient could deliver the
response message later (asynchronously).

Note that the message in Figure 2 has no SOAP
headers; the body simply contains an XML repre-
sentation of an e-ticket with the person’s name
and flight details. Any realistic B2B scenario
would, of course, have many headers indicating
further information, including the sender’s cre-
dentials and correlation information.

Remote Procedure Calls Using SOAP
To use SOAP for RPCs, you must define an RPC
protocol, including:

� how typed values can be transported back and
forth between the SOAP representation (XML)
and the application’s representation (such as a
Java class for a ticket), and

� where the various RPC parts are carried (object
identity, operation name, and parameters).

The W3C’s XML schema specification (www.
w3.org/XML/Schema) provides a standard lan-
guage for defining the document structure and the
XML structures’ data types. That is, given a type
like integer or a complex type, such as a record
with two fields (say, an integer and a string), XML
schema offers a standard way to write the type in
XML. To enable transmission of the typed values,
SOAP assumes a type system based on the one in
XML schema and defines its canonical encoding
in XML. Using this encoding style, you can pro-
duce an XML encoding for any type of structured
data. RPC arguments and responses are also rep-

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2002 87

Web Services

<SOAP:Envelope xmlns:SOAP=
“http://schemas.xmlsoap.org/soap/envelope/”>

<SOAP:Header>
<!— content of header goes here —>

</SOAP:Header>
<SOAP:Body>

<!— content of body goes here —>
</SOAP:Body>

</SOAP:Envelope>

Figure 1. Structure of a SOAP message.The envelope features child
elements that contain the message header and body elements.

POST /travelservice
SOAPAction: “http://www.acme-travel.com/checkin”
Content-Type: text/xml; charset=“utf-8”
Content-Length: nnnn

<SOAP:Envelope xmlns:SOAP=
“http://schemas.xmlsoap.org/soap/envelope/”>

<SOAP:Body>
<et:eTicket xmlns:et=

“http://www.acme-travel.com/eticket/schema”>
<et:passengerName first=“Joe” last=“Smith”/>
<et:flightInfo airlineName=“AA”

flightNumber=“1111”
departureDate=“2002-01-01”
departureTime=“1905”/>

</et:eTicket>
</SOAP:Body>

</SOAP:Envelope>

Figure 2. SOAP message containing an e-ticket.The SOAPAction
header indicates the message’s purpose. In a real-world scenario,
the message would contain additional information, including the
sender’s credentials.

resented using this encoding.
Now, let’s say Joe wants to know whether his

flight has been delayed. He knows that the service
has a function, GetFlightInfo, which takes two
arguments — a string containing the airline name
and an integer with the flight number — and returns
a structured value (a record) with two fields — the
gate number and flight status. In this case, Joe can
get flight status by sending the service an HTTP POST
carrying a SOAP envelope like the one in Figure 3.

In this SOAP envelope, the call to GetFlight-
Info is an XML element with attributes that
include information about the encoding (note the
references to XML schema). The element’s children
are the method call’s arguments: airlineName and
flightNumber. Their types are defined in the type
attributes, where xsd refers to the XML schema
definitions. When the SOAP implementation
receives the message, it converts the XML text for
UL and 506 into the appropriate string and integer
based on the service’s implementation. It then calls
the GetFlightInfo method with those arguments.

Figure 4 shows the response to this request. In
this case, the response contains a structured value
with the subvalues for gate number and flight sta-
tus. Luckily, Joe’s flight is on time.

SOAP implementations exist for several pro-
gramming languages, including C, Java, and Perl,

which automatically generate and process the
SOAP messages. Assuming the messages conform
to SOAP specifications, they can thus be exchanged
by services implemented in different languages.

Description:WSDL
Speaking a universal language is not very useful
unless you can maintain the basic conversations
that let you achieve your goals. For Web services,
SOAP offers basic communication, but it does not
tell us what messages must be exchanged to suc-
cessfully interact with a service. That role is filled
by WSDL, an XML format developed by IBM and
Microsoft to describe Web services as collections
of communication end points that can exchange
certain messages. In other words, a WSDL docu-
ment describes a Web service’s interface and pro-
vides users with a point of contact.

In this section, our examples are fragments of a
WSDL document that describes a Web service that
can process the two types of interactions in our
SOAP examples. The first interaction, GetFlightIn-
fo, is accessed using the SOAP RPC model; it takes
an airline name and a flight number and returns a
complex (or structured) type with flight information.
The second, CheckIn, uses pure SOAP messaging; it
expects to receive an XML representation of an elec-
tronic ticket, and returns no information.

A complete WSDL service description provides
two pieces of information: an application-level
service description, or abstract interface, and the
specific protocol-dependent details that users must
follow to access the service at concrete service end
points. This separation accounts for the fact that
similar application-level service functionality is
often deployed at different end points with slight-
ly different access protocol details. Separating the
description of these two aspects helps WDSL rep-
resent common functionality between seemingly
different end points.

Abstract Description
WSDL defines a service’s abstract description in
terms of messages exchanged in a service interac-
tion. There are three main components of this
abstract interface: the vocabulary, the message,
and the interaction. Agreement on a vocabulary is
the foundation of any type of communication.
WSDL uses external type systems to provide data-
type definitions for the information exchange.
Although WSDL can support any type system,
most services use XSD. Figure 5 shows two data
types defined in XSD (string and int), and two
data types defined in external schema (Flight

88 MARCH • APRIL 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Spotlight

POST /travelservice
SOAPAction: “http://www.acme-travel.com/flightinfo”
Content-Type: text/xml; charset=“utf-8”
Content-Length: nnnn

<SOAP:Envelope xmlns:SOAP=
“http://schemas.xmlsoap.org/soap/envelope/”>

<SOAP:Body>
<m:GetFlightInfo
xmlns:m=“http://www.acme-travel.com/flightinfo”
SOAP:encodingStyle=

“http://schemas.xmlsoap.org/soap/encoding/”
xmlns:xsd=“http://www.w3.org/2001/XMLSchema”
xmlns:xsi=

“http://www.w3.org/2001/XMLSchema-instance”>
<airlineName xsi:type=“xsd:string”>UL
</airlineName>

<flightNumber xsi:type=“xsd:int”>506
</flightNumber>

</m:GetFlightInfo>
</SOAP:Body>

</SOAP:Envelope>

Figure 3. SOAP RPC call.To find out if his flight is on time, Joe
sends a string containing the airline’s name and an integer with
the flight number.

InfoType and Ticket). WSDL can import such
external XSD definitions using an “import” ele-
ment specifying their location.

WSDL defines message elements as aggrega-
tions of parts, each of which is described by XSD
types or elements from a predefined vocabulary.
Messages provide an abstract, typed data defini-
tion sent to and from the services. The example in
Figure 5 shows the three messages that might
appear during a Web services interaction. The mes-
sage, GetFlightInfoInput, has two parts: airli-
neName, which is an XSD string, and flightNum-
ber, which is an XSD integer. The other two
messages, GetFlightInfoOutput and CheckInIn-
put have only one part each. The operation and
portType elements combine messages to define
interactions. Each operation represents a message
exchange pattern that the Web service supports,
giving users access to a certain basic piece of ser-
vice functionality. An operation is simply a com-
bination of messages labeled as input, output, or
fault to indicate what part a particular message
plays in the interaction.

A portType is a collection of operations that are
collectively supported by an end point. In our
example, AirportServicePortType describes two
operations: a single request-response operation,
GetFlightInfo, which expects the GetFlight
InfoInput message as input and returns a Get-
FlightInfoOutput message as the response; and
a one-way operation, CheckIn, which just takes
the CheckInInput message as input.

Concrete Binding Information
So far, all of the elements that we have discussed
describe the service’s application-level functionality.
To complete the description of client–service inter-
action, we need three more pieces of information:

� what communication protocol to use (such as
SOAP over HTTP),

� how to accomplish individual service interac-
tions over this protocol, and

� where to terminate communication (the net-
work address).

WSDL’s binding element provides the “what” and
“how” parts of this information, including the com-
munication protocol and data format specification
for a complete portType. In short, the binding ele-
ment tells how a given interaction occurs over the
specified protocol. Figure 6 (next page) shows a
fragment from our example. The binding describes
how to use SOAP to access the travelservice ser-

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2002 89

Web Services

HTTP/1.1 200 OK
Content-Type: text/xml; charset=“utf-8”
Content-Length: nnnn

<SOAP:Envelope xmlns:SOAP=
“http://schemas.xmlsoap.org/soap/envelope/”>

<SOAP:Body>
<m:GetFlightInfoResponse

xmlns:m=“http://www.acme-travel.com/flightinfo”
SOAP:encodingStyle=
“http://schemas.xmlsoap.org/soap/encoding/”

xmlns:xsd=“http://www.w3.org/2001/XMLSchema”
xmlns:xsi=
“http://www.w3.org/2001/XMLSchema-instance”>

<flightInfo>
<gate xsi:type=“xsd:int”>10</gate>
<status xsi:type=“xsd:string”>ON TIME</status>

</flightInfo>
</m:GetFlightInfoResponse>

</SOAP:Body>
</SOAP:Envelope>

Figure 4. SOAP RPC response.The travel service responds to Joe’s
request with a structured value containing subvalues for gate number
and flight status.

<message name=“GetFlightInfoInput”>
<part name=“airlineName” type=“xsd:string”/>
<part name=“flightNumber” type=“xsd:int”/>

</message>

<message name=“GetFlightInfoOutput”>
<part name=“flightInfo” type=“fixsd:FlightInfoType”/>

</message>

<message name=“CheckInInput”>
<part name=“body” element=“eticketxsd:Ticket”/>

</message>

<portType name=“AirportServicePortType”>
<operation name=“GetFlightInfo”>
<input message=“tns:GetFlightInfoInput”/>
<output message=“tns:GetFlightInfoOutput”/>

</operation>
<operation name=“CheckIn”>
<input message=“tns:CheckInInput”/>

</operation>
</portType>

Figure 5.WSDL abstract description.This fragment shows the string
and int data types,which are defined in XSD,and two other data
types defined in external schema:FlightInfoType and
Ticket,which we assume were imported earlier in the WSDL file.

vice. In particular, the WSDL document shows that

� GetFlightInfo will be a SOAP-RPC-style
interaction, in which all message exchanges use
standard SOAP encoding, and

� CheckIn is a pure messaging interaction (“doc-
ument-oriented,” in WSDL terms) in which the
SOAP message’s body contains the encoded
message with no additional type encoding; that
is, it uses XSD to literally describe the trans-
mitted XML.

All that remains now is to define “where” to access

this combination of abstract interface and proto-
col and data marshalling details (the binding). A
port element describes a single end point as a
combination of a binding and a network address.
Consequently, a service element groups a set of
related ports. In our travel service example, a sin-
gle port describes an end point that processes
SOAP requests for the travelservice service.

Using WSDL
For users and developers, WSDL provides a for-
malized description of client–service interaction.
During development, developers use WSDL as the
input to a proxy generator that produces client
code according to the service requirements. WSDL
can also be used as input to a dynamic invocation
proxy, which can then generate the correct service
requests at runtime. The result in both cases is to
relieve the user and developer of the need to
remember or understand all the details of service
access. For example, travel service users need only
obtain the WSDL description and use it as input to
the tooling and runtime infrastructure to exchange
the correct SOAP message types with the service.

Discovery: UDDI
The Universal Description, Discovery, and Integra-
tion specifications offer users a unified and system-
atic way to find service providers through a cen-
tralized registry of services that is roughly
equivalent to an automated online “phone directo-
ry” of Web services. The browser-accessible UDDI
Business Registry (UBR) became available shortly
after the specification went public. Several individ-
ual companies and industry groups are also start-
ing to use “private” UDDI directories to integrate
and streamline access to their internal services.

UDDI provides two basic specifications that
define a service registry’s structure and operation:

� a definition of the information to provide about
each service, and how to encode it; and

� a query and update API for the registry that
describes how this information can be accessed
and updated.

Registry access is accomplished using a standard
SOAP API for both querying and updating. Here
we focus on the first aspect, which provides a good
idea of how the registry operates.

Organizing Structure
UDDI encodes three types of information about
Web services:

90 MARCH • APRIL 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Spotlight

<binding name=“AirportServiceSoapBinding”
type=“tns:AirportServicePortType”>

<soap:binding transport=
“http://schemas.xmlsoap.org/soap/http”/>

<operation name=“GetFlightInfo”>
<soap:operation style=“rpc”

soapAction=“http://acme-travel/flightinfo”/>
<input>
<soap:body use=“encoded”

namespace=“http://acme-travel.com/flightinfo”
encodingStyle=
“http://schemas.xmlsoap.org/soap/encoding/”/>

</input>
<output>
<soap:body use=“encoded”

namespace=“http://acme-travel.com/flightinfo”
encodingStyle=
“http://schemas.xmlsoap.org/soap/encoding/”/>

</output>
</operation>
<operation name=“CheckIn”>
<soap:operation style=“document”

soapAction=“http://acme-travel.com/checkin”/>
<input>
<soap:body use=“literal”/>

</input>
</operation>

</binding>

<service name=“travelservice”>
<port name=“travelservicePort”

binding=“tns:AirportServiceSoapBinding”>
<soap:address location=

“http://acmetravel.com/travelservice”/>
</port>

</service>

Figure 6.WSDL’s concrete binding information. As this fragment
shows,GetFlightInfo is a SOAP RPC interaction and
CheckIn is a pure messaging interaction that uses XSD to
describe the transmitted XML.

� “white pages” information includes name and
contact details;

� “yellow pages” information provides a cate-
gorization based on business and service
types; and

� “green pages” information includes technical
data about the services.

The UDDI registry is organized around two funda-
mental entities that describe businesses and the
services they provide. The businessEntity ele-
ment illustrated in Figure 7 provides standard
white-pages information, including identifiers (tax
IDs, social security numbers, and so on), contact
information, and a simple description. Each busi-
ness entity might include one or more busi-
nessService elements, shown in Figure 8 (next
page), that represent the services it provides. Both
business and service entities can specify a cate-
goryBag to categorize the business or service (we
discuss later how to encode this information).

Figures 7 and 8 (next page) show an important
aspect of UDDI’s design: Unique keys identify each
data entity — businesses, services, and so on — that
might be cross-referenced. These assigned keys are
long hexadecimal strings generated when the enti-
ty (in this case, a business) is registered. The keys
are guaranteed to be universally unique identifiers
(UUIDs). For example, the businessKey attribute
uniquely identifies a business entity and the ser-
viceKey attribute identifies a service. A service
also references its host by its business key. In addi-
tion to a human-readable description, name, and
categorization, the service entity contains a list of
bindingTemplates that encode the technical ser-
vice-access information. Each binding template
represents an access point to the service. The
assumption is that the same service can be pro-
vided at different endpoints, each of which might
have different technical characteristics.

Technical Descriptions and tModels
A closer look at the binding template shows a
great deal about how UDDI enables business and
service descriptions using arbitrary external infor-
mation (that is, information that is not defined by
UDDI itself). Most of the information in a binding
template is what we would naturally expect for an
endpoint. Foremost is the end point address where
the service can be accessed. This address might be
a URL, e-mail address, or even a phone number.
We also find the expected unique key (binding
Key) and a cross-reference to the service key.

The most interesting field, however, is tMod-

elInstanceDetails, which provides the service’s
technical description (the green-pages informa-
tion). The field contains a list of references to the
technical specifications with which the service
complies. The service provider first registers the
required technical specifications in the directory,
which assigns a corresponding unique identifier
key. UDDI represents each registered technical
specification using a new information entity, the
tModel. Service endpoints that support the speci-
fication can then simply add the corresponding
reference to their tModelInstanceDetails list.

As an example, let’s say we want to register a
WSDL document as a tModel. Assuming that the
travel industry has defined the standard WSDL
interfaces and bindings for electronic check-in and
retrieval of flight information, we first create a
tModel like the one in Figure 9 (page 93) to repre-
sent these WSDL definitions. Service end points
that implement those interfaces can then include

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2002 91

Web Services

<businessEntity businessKey=
“A687FG00-56NM-EFT1-3456-098765432124”>

<name>Acme Travel Incorporated</name>
<description xml:lang=“en”>
Acme is a world leader in online travel services

</description>
<contacts>
<contact useType=“US general”>
<personName>Acme Inc.</personName>
<phone>1 800 CALL ACME</phone>
<email useType=““>acme@acme-travel.com</email>
<address>
<addressLine>Acme</addressLine>
<addressLine>12 Maple Avenue</addressLine>
<addressLine>Springfield, CT 06785</addressLine>

</address>
</contact>

</contacts>
<businessServices> ...
</businessServices>
<identifierBag> ...
</identifierBag>
<categoryBag> ...
<keyedReference tModelKey=

“UUID:DB77450D-9FA8-45D4-A7BC-04411D14E384”
keyName=“Electronic check-in”
keyValue=“84121801”/>

</categoryBag>
</businessEntity>

Figure 7. Simplified businessEntity structure.This element
offers standard white-pages information, including contact informa-
tion and basic service descriptions.

the corresponding tModels in their instance-details
lists. To be useful, of course, users and imple-
menters of compliant services must be aware of the
registered tModels and their keys.

The idea behind the tModel mechanism is sim-
ple and powerful: To adequately describe a service,
we often have to reference information whose type
or format cannot (and should not) be anticipated.
Replacing the information itself with a unique key
provides a reference to arbitrary information types.

Categorization
Effectively locating particular types of businesses
and services depends on our ability to qualify the
directory’s business and service entries according
to a categorization scheme or taxonomy. In fact,
in any realistic situation, we typically need multi-
ple information bits, such as geographical location
or type of industry or product, to characterize the

service we are seeking.
To identify taxonomical systems, each classifica-

tion system itself is registered as a tModel in the
UDDI registry. Taxonomy information is then
encoded in name-value pairs, qualified by a
tModel key reference that identifies which taxono-
my each pair belongs to. Three standard taxonomies
are cited by UDDI and preregistered in the UBR:

� an industry classification complying with the
North American Industry Classification System
(NAICS) taxonomy,

� a classification of products and services com-
plying with the Universal Standard Products and
Services Code System (UNSPSC) taxonomy, and

� a geographical categorization system complying
with the International Organization for Stan-
dardization Geographic taxonomy (ISO 3166).

Using categorization, we can query the UDDI
directory to locate very specific types of services.
In our case, we might search for travel services that
provide electronic checkin and operate in Joe’s
metropolitan area. Once we find the service in
UDDI, we can retrieve the WSDL description it
complies with to learn how to interact with it using
SOAP messaging and SOAP RPC calls.

What Next ?
In a real business situation, even our simple trav-
el scenario would require more than three pieces
of the Web services framework to operate proper-
ly. At the very least, we would have to ensure that
transactions like the electronic check-in were con-
ducted in a secure environment and that messages
were reliably delivered to their destinations.

Why must we build additional security when we
have technologies such as Secure Multipurpose Inter-
net Mail Extensions (S-MIME), HTTP Secure (HTTPS),
and Kerberos? The answer lies in the difference
between end-to-end and single-hop usage. Business
messages typically originate deep inside one enter-
prise and go deep inside another. Mechanisms such
as Secure Sockets Layer are great for securing (for
confidentiality) a direct connection from one
machine to another, but they are of no help if the
message has to travel over more than one connec-
tion. That’s why we need security at the SOAP level.

Researchers are now defining a security model as
a set of add-on specifications. For example, the
SOAP Security Extensions: Digital Signatures pro-
posal (www.w3.org/TR/SOAP-dsig/) describes how
SOAP messages can be digitally signed. Groups are
also developing specifications for authentication,

92 MARCH • APRIL 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Spotlight

<businessService serviceKey=
“894B5100-3AAF-11D5-80DC-002035229C64”

businessKey=
“D2033110-3AAF-11D5-80DC-002035229C64”>

<name>ElectronicTravelService</name>
<description xml:lang=“en”>Electronic Travel

Service</description>
<bindingTemplates>
<bindingTemplate bindingKey=

“6D665B10-3AAF-11D5-80DC-002035229C64”
serviceKey=

“89470B40-3AAF-11D5-80DC-002035229C64”>
<description>
SOAP-based e-checkin and flight info

</description>
<accesssPoint URLType=“http”>
http://www.acme-travel.com/travelservice

</accessPoint>
<tModelInstanceDetails>
<tModelInstanceInfo tModelKey=

“D2033110-3BGF-1KJH-234C-09873909802”>
...
</tModelInstanceInfo>

</tModelInstanceDetails>
</bindingTemplate>

</bindingTemplates>
<categoryBag> ...
</categoryBag>

</businessService>

Figure 8. Simplified businessService structure. A business
might include such a structure for each service it provides.The
tModelInstanceDetails provides the service’s technical
description (the green-pages information).

confidentiality, and authorization using SOAP.
A second important aspect for real business

integrations is the communication protocol’s reli-
ability. Again, we could use a reliable transport,
such as Reliable HTTP (HTTPR), but the multihop
scenario demands that reliability be defined at the
SOAP level. We expect researchers to add a “reli-
able SOAP” standard to the basic protocol soon.

Finally, complex business interactions require
support for higher levels of business functionali-
ty. In particular, we need descriptions of quality-
of-service properties that service end points offer.
On the other hand, business interactions are typi-
cally long running and involve multiple interac-
tions between partners. To deploy and effectively
use these types of services, we must be able to rep-
resent business processes and stateful services, and
be able to create service compositions (complex
aggregations) in a standardized and systematic
fashion. Several proposals for accomplishing this
now exist; see, for example, Web Services Flow
Language (www-4.ibm.com/software/solutions/
webservices/pdf/WSFL.pdf) and X-Lang (www.
gotdotnet.com/team/xml_wsspecs/xlang-c/
default.htm).

Francisco Curbera is a research staff member in the Component

Systems group at IBM’s T.J. Watson Research Center. He

received a PhD in computer science from Columbia Uni-

versity. He has worked for several years on the use of

markup languages for application development and soft-

ware-component composition. He is also coauthor of the

WSDL and WSFL specifications.

Matthew Duftler is a software engineer in the Component Sys-

tems group at IBM T.J. Watson Research Center. He was

one of the original authors of Apache SOAP, and is the co-

lead of JSR110, Java APIs for WSDL.

Rania Khalaf is a software engineer in the Component Systems

group at the IBM T.J. Watson Research Center. She received

her BS and MEng in computer science and electrical engi-

neering from MIT.

William Nagy is a software engineer at IBM’s T.J. Watson

Research Center. His research interests include the develop-

ment of wide area distributed services and the infrastructure

necessary to use and support them. His current focus is on

Web services and includes the development of IBM’s Web

Services Gateway and the WS-Inspection specification.

Nirmal Mukhi is a research associate in the Component Sys-

tems group at the IBM T. J. Watson Research Center, where

he does Web services research. He is codeveloper of the

Web Services Invocation Framework.

Sanjiva Weerawarana is a research staff member in the Com-

ponent Systems group at IBM T.J. Watson Research Cen-

ter. He is coauthor of the WSDL and WSFL specifications,

and codeveloper of Apache SOAP, WSTK, WSDL Toolkit,

WSIF, and WSGW. He received a PhD in computer science

from Purdue University.

Readers can contact the authors at {rkhalaf, sanjiva, curbera,

duftler, nmukhi}@us.ibm.com.

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2002 93

Web Services

<tModel tModelKey=““>
<name>http://www.travel.org/e-checkin-interface</name>
<description xml:lang=“en”>
Standard service interface definition for travel

services
</description>
<overviewDoc>
<description xml:lang=“en”>
WSDL Service Interface Document

</description>
<overviewURL>
http://www.travel.org/services/e-checkin.wsdl

</overviewURL>
</overviewDoc>
<categoryBag> ...
</categoryBag>

</tModel>

Web Services Resources

� Web services news, articles, and software information • www.
webservices.org

� IBM’s developerWorks site (Web services tutorials, articles, forums,
and tools) • www–106.ibm.com/developerworks/webservices

� Microsoft’s Web services pages • www.gotdotnet.com/team/
XMLwebservices

� W3C Web services Workshop • www.w3.org/2001/01/WSWS
� W3C SOAP specification • www.w3.org/2000/xp
� WSDL 1.1 specification • www.w3.org/TR/wsdl.html
� UDDI pages • www.uddi.org
� SOAP Digital Signatures Proposal • www.w3.org/TR/SOAP-dsig/
� Web Services Flow Language • www-4.ibm.com/software/solutions/

webservices/pdf/WSFL.pdf
� X-Lang • www.gotdotnet.com/team/xml_wsspecs/xlang-c/

Figure 9. Sample tModel definition.To register a WSDL document
as a tModel, we assume standard industry definitions for elec-
tronic check-in and retrieval of flight information and create a
tModel to represent these WSDL definitions.

