Pedro Amaral

Network Layer - Routing

- **Static:** The router learns routes when an administrator manually configures the static route. The administrator must manually update this static route entry whenever an internetwork topology change requires an update.
- **Dynamic:** The router dynamically learns routes after an administrator configures a routing protocol that helps determine routes.

describe the following information:

• How updates are conveyed

Routing protocol

- What knowledge is conveyed
 - When to convey the knowledge
 - How to locate recipients of the updates

Network Layer – IGP and EGP

IGP Versus EGP

Network Layer – IGP and EGP

- **Distance vector:** The distance vector routing approach determines the direction (vector) and distance (such as hops) to any link in the internetwork.
- Link-state: The link-state approach, which utilizes the shortest path first (SPF) algorithm, creates an abstraction of the exact topology of the entire internetwork, or at least of the partition in which the router is situated.
- Advanced distance vector: The advanced distance vector approach combines aspects of the link-state and distance vector algorithms. This is also sometimes referred to as a hybrid routing protocol.

Routing protocols in the Network

Distance Vector protocols

Periodicaly advertise routes as vectors, where distance is a metric (or cost) such as hop count, and vector is the next-hop router's IP used to reach the destination

- Distance: The distance is the route metric to reach the network.
- Vector: The vector is the interface or direction to reach the network.

Routers determine least cost path (distance vector protocols implement a distributed Bellman-Ford algorithm) and advertise only those to neighbors

Distance Vector protocols - EIGRP

Non- Distance Vector Characterisitcs:

- Support for VLSM and discontiguous subnets
- Load balancing across equal- and unequal-cost pathways
- Easy configuration for WANs and LANs
- Manual summarization at any point
- Sophisticated metric

updates through neighbour relationships only when there is a change in the network

EIGRP – Key technologies

EIGRP

- Runs directly above the IP layer
- Neighbor discovery and recovery
 - Uses Hello packets between neighbors
- Reliable Transport Protocol
 - Guaranteed, ordered EIGRP packet delivery to all neighbors
 - Used for flooding

EIGRP – Packets

- Hello: Establish neighbor relationships
- Update: Send routing updates
- Query: Ask neighbors about routing information
- Reply: Respond to query about routing information
- ACK: Acknowledge a reliable packet

```
<omitted>
EIGRP: Enqueueing UPDATE on Ethernet0 iidbQ un/rely 0/1 serno 683-683
EIGRP: Sending UPDATE on Ethernet0
AS 1, Flags 0x0, Seq 624/0 idbQ 0/0 iidbQ un/rely 0/0 serno 683-683<output
omitted>
```

<cmitted>
EIGRP: Enqueueing QUERY on Ethernet0 iidbQ un/rely 0/1 serno 699-699
EIGRP: Sending QUERY on Ethernet0
AS 1, Flags 0x0, Seq 650/0 idbQ 0/0 iidbQ un/rely 0/0 serno 699-699
<cmitted>

<cmitted>
DUAL: dual_rcvreply(): 10.1.4.0/24 via 10.1.2.1 metric 4294967295/4294967295
<cmitted>

EIGRP – Initial Route Discovery

EIGRP – Neighbour Table

The list of directly connected routers running EIGRP with which this router has an adjacency

IP EIGRP N	eighbor Table
Next-Hop Router	Interface

R1 IP	# <mark>show ip eigrp</mark> -EIGRP neighbo	neighbor ors for process	1				
н	Address	Interface	Hold Uptime	SRTT	RTO	Q	Seq
			(sec)	(ms)		Cnt	Num
2	10.1.115.5	Se0/0/0.4	11 00:17:16	1239	5000	0	3
1	10.1.112.2	Se0/0/0.1	12 00:17:25	538	3228	0	14
0	172.30.13.3	Fa0/0	13 00:17:31	416	2496	0	13

EIGRP – Topology table

- The list of all routes learned from each EIGRP neighbor
- The source for the topology table: IP EIGRP Neighbor Table

IP EIGRP Topology Table

Destination 1 FD and AD via Each Neighbor

R1# <mark>show ip eigrp topology</mark> IP-EIGRP Topology Table for AS(1)/ID(172.30.13.1)
Codes: P - Passive, A - Active, U - Update, Q - Query, R - Reply, r - reply Status, s - sia Status
P 192.168.1.0/24, 1 successors, FD is 2297856 via 10.1.115.5 (2297856/128256), Serial0/0/0.4
P 192.168.2.0/24, 1 successors, FD is 2297856 via 10.1.115.5 (2297856/128256), Serial0/0/0.4
P 192.168.3.0/24, 1 successors, FD is 2297856 via 10.1.115.5 (2297856/128256), Serial0/0/0.4
P 10.1.115.0/24, 1 successors, FD is 2169856 via Connected, Serial0/0/0.4
<output omitted=""></output>

EIGRP – IP routing table

- The list of all best routes from the EIGRP topology table and other routing processes
- The source for the EIGRP routes in an IP routing table: IP EIGRP Topology Table

The IP Routing TableDestination 1Best Route

R1#show ip route eigrp	
<pre><output omitted=""></output></pre>	
172.30.0.0/24 is subnetted, 2 subnets	
D 172.30.24.0 [90/2172416] via 10.1.112.2, 04:13:27, Serial0/0/0.1	
10.0.0.0/24 is subnetted, 3 subnets	
D 10.1.134.0 [90/2172416] via 172.30.13.3, 04:13:27, FastEthernet0/0	
D 192.168.1.0/24 [90/2297856] via 10.1.115.5, 04:13:19, Serial0/0/0.4	
D 192.168.2.0/24 [90/2297856] via 10.1.115.5, 04:13:19, Serial0/0/0.4	
D 192.168.3.0/24 [90/2297856] via 10.1.115.5, 04:13:19, Serial0/0/0.4	
<output cmitted=""></output>	

EIGRP – Tables Example

Example: EIGRP Tables

EIGRP – DUAL

- Upstream and downstream router
- Selects lowest-cost loop-free paths to each destination
 - Advertised Distance (AD) = next-hop router-destination
 - Feasible Distance (FD) = local router cost + AD
 - Lowest-cost = lowest FD
 - <u>(Current) successor</u> = next-hop router with the lowest-FD-cost loop-free path
 - Feasible successor = backup router with loop-free path (its AD < current successor FD)</p>

EIGRP – DUAL

- The topology table is changed when:
 - The cost or state of a directly connected link changes
 - An EIGRP packet (update, query, reply) is received
 - A neighbor is lost
- DUAL computes an alternate path if the primary (successor) is lost
 - Local computation: a feasible successor is present in the topology—the route is passive
 - DUAL recomputation: no feasible successor is present in the topology—the route is active

EIGRP – Example

Advertised distance is the distance (metric) to a destination as advertised by an upstream neighbor

EIGRP – Example

Topology	Destination	Advertised Distance (AD)	Neighbor
Table	10.0.0/8	20+10=30	R8
	10.0.0/8	1+10+10=21	R2
	10.0.0/8	100+20+10+10=140	R4

Destination	Feasible Distance (FD)	Neighbor
10.0.0/8	100+20+10=130	R8
10.0.0/8	100+1+10+10=121	R2
10.0.0/8	100+100+20+10+10=240	R4

EIGRP – Successor and Feasible Successor

Destination	AD	FD	Neighbor	Status
10.0.0/8	30	130	R8	FS
10.0.0.0/8	21	121	R2	S
10.0.0/8	140	240	R4	

EIGRP – Successor and Feasible Successor

- R1 receives information about 10.0.0./8 from R8 and R4
- FD on R1 is smaller than AD from R4 and the update from R4 is not FS

EIGRP – Metrics

- The use of metric components is represented by K values
- Metric components are:
 - Bandwidth (K1)
 - Delay (K3)
 - Reliability (K4 and K5)
 - Loading (K2)
- MTU is included in the update but not used for metric calculation

EIGRP – Planning

- Verify and configure IP addressing
- Enable EIGRP using the correct AS number
- Define networks to include per router
- Define a special metric to influence path selection

Router	Link Metric	
R1	Fa0	Bandwidth = 10 Mb/s

EIGRP – Documenting

- Documenting EIGRP
 - Topology—use topology map
 - AS numbering and IP addressing
 - Networks included in EIGRP per routers
 - Non-default metric applied

Router	Link Metri c	
R1	Fa0	Bandwidth = 10 Mb/s
R2	Serial1 Delay = 100	
R2	Serial2 Delay = 200	
R2	Tunnel	Bandwidth = 2 Mb/s

EIGRP – Requirements

- EIGRP routing protocol AS number
- Interfaces for EIGRP neighbor relationship
- Networks participating in EIGRP
- Interface bandwidth

EIGRP – Configuring

- Define EIGRP as the routing protocol
- All routers in the internetwork that must exchange EIGRP routing updates must have the same autonomous system number

EIGRP – Configuring

- Define the attached networks participating in EIGRP
- The wildcard-mask is an inverse mask used to determine how to interpret the address. The mask has wildcard bits, where 0 is a match and 1 is "do not care."

EIGRP – Configuring

EIGRP – Configuring

R1#

R2#

<pre>interface FastEthernet0/0 ip address 172.16.1.1 255.255.255.0 ! interface Serial0/0/1</pre>	<pre>interface FastEthernet0/0 ip address 172.17.2.2 255.255.255.0 ! interface Serial0/0/1</pre>
ip address 192.168.1.101 255.255.255.224	ip address 192.168.1.102 255.255.255.224
!	!
router eigrp 110	router eigrp 110
network 172.16.1.0 0.0.0.255	network 172.17.2.0 0.0.0.255
network 192.168.1.0	network 192.168.1.0

EIGRP – verifying

EIGRP – Verifying EIGRP Routes

EIGRP – Verification

EIGRP – Passive Interfaces

- EIGRP announces the directly connected network of an interface
- EIGRP does not try to form neighbor relationships over the interface where only the host is connected
 - Reduces traffic overhead

EIGRP – Default routes

- Default routes decrease the size of the routing table
- Multiple candidates:
 - 0.0.0.0 is statically set or advertised by the routing protocol

EIGRP: Use Default Route and Redistribution

```
R2(config)#ip route 0.0.0.0 0.0.0.0 172.31.1.2
R2(config)#router eigrp 110
R2(config-router)#redistribute static
```

EIGRP – Route Summarization

- Improves network scalability
 - Smaller routing tables
 - Fewer updates
- Should follow IP addressing

EIGRP – Automatic Route Summarization

- Performed on major network boundaries
 - Subnetworks are summarized to a single classful (major) network.
 - Automatic summarization occurs by default.
- Could result in routing issues—disable auto summarization

EIGRP – Manual Route Summarization

EIGRP – Route Summarization

R3# <mark>show ip route</mark>
Gateway of last resort is not set
172.16.0.0/16 is variably subnetted, 3 subnets, 2 masks
D 172.16.0.0/16 is a summary, 00:00:04, Null0
D 172.16.1.0/24 [90/156160] via 10.1.1.2, 00:00:04, FastEthernet0/0
D 172.16.2.0/24 [90/20640000] via 10.2.2.2, 00:00:04, Serial0/0/1
C 192.168.4.0/24 is directly connected, Serial0/0/0
10.0.0.0/8 is variably subnetted, 3 subnets, 2 masks
C 10.2.2.0/24 is directly connected, Serial0/0/1
<output omitted=""></output>

EIGRP – Load Balancing

- Routes with a metric equal to the minimum metric are installed in the routing table - equal-metric load balancing
- Up to 16 entries can be in the routing table for the same destination (default is 4)
 - Maximum number is configurable
 - To disable load balancing, set the value to one

```
R1(config)#
```

```
router eigrp 110
maximum-paths 2
```

 To control the maximum number of parallel routes that an IP routing protocol can support

EIGRP – Load Balancing

EIGRP – Load Balancing Unequal-Cost

- The router can balance traffic across multiple routes that have different metrics to a destination
 - Successor is always used
 - Feasible successors are used if the cost is less than (minimum cost * variance)
 - Variance is only a multiplier, not a max-path parameter
 - The maximum number of paths is limited by the maximumpaths command
 - Variance opens the gate for unequal-cost load balancing

```
R1(config)#
```

```
router eigrp 110
variance 2
```

• To control load balancing in an internetwork based on EIGRP

EIGRP – Load Balancing Unequal-Cost

R1# <mark>show ip route e</mark> i	grp
<output omitted=""></output>	
172.16.0.0/16 is v	ariably subnetted, 2 subnets, 2 masks
D 172.16.2.0/24	[90/10665472] via 192.168.2.2, 00:07:01, Serial1/2
	[90 <mark>/11151872]</mark> via 192.168.1.2, 00:07:01, Serial1/1
<output omitted=""></output>	