
CGR

PEDRO AMARAL

Network Programmability

• Definition: Network programmability is the use of software to deploy, manage, and troubleshoot network devices and
services. This approach moves away from traditional manual configuration methods towards more automated, software-
driven techniques.

Allows:

• Quicker deployments of new network configurations or services.

• More efficient managing of existing network infrastructure.

• Troubleshooting issues using programmatic tools

Instead of logging into each device individually to make changes, network programmability allows for centralized control and
automation of these tasks.

Network Programmability
Key Components:

APIs (Application Programming Interfaces):

• Sets of protocols, routines, and tools for building software applications.
• Allow direct interaction with network devices.

Examples: Cisco's NX-API , Juniper's Junos XML API or REST APIs like
RESTCONF.

Protocols

NETCONF (Network Configuration Protocol): developed by the IETF for
installing, manipulating, and deleting network device configurations.
• Uses XML for data encoding and operates over a secure transport

(typically SSH).

RESTCONFA REST-like protocol that provides a programmatic interface for
accessing data defined in YANG, using datastores defined in NETCONF.
• Uses HTTP/HTTPS for transport and JSON or XML for data encoding.

Programming Languages:

Python: popular choice for network automation. Libraries like
Netmiko or NAPALM are widely used for network automation tasks.

YANG: data modelling language used to model configuration and
state data manipulated by network protocols like NETCONF and
RESTCONF.

It describes what data is available, but not how it is stored or
accessed.

Network Programmability
SHIFT IN APPROACH:

Traditional method: Manual, device-by-device configuration:

• Network engineers would log into each device separately.

• Use Command Line Interface (CLI) to make changes.

• Time-consuming and prone to human error, especially in large networks

Shift in approach:

New programmable method: Automated, programmatic control:

• Write scripts or use automation tools to manage multiple devices
simultaneously.

• Changes can be version-controlled and tested before deployment.

• Enables consistency across the network and reduces the chance of
human error.

• Allows for rapid deployment of changes and easier scaling of network
management.

Network Programmability
SHIFT IN APPROACH:

Shift in approach:

New programmable method: Automated, programmatic control:

• Write scripts or use automation tools to manage multiple devices
simultaneously.

• Changes can be version-controlled and tested before deployment.

• Enables consistency across the network and reduces the chance of
human error.

• Allows for rapid deployment of changes and easier scaling of network
management.

Examples:

• Configuration backups: Automatically backing up device configs daily.

• Compliance checks: Ensuring all devices meet security standards.

• Troubleshooting: Automated collection of diagnostic information.

Network Programmability
COMMON AUTOMATION TOOLS AND FRAMEWORKS

Configuration management tools:

• Ansible: Agentless automation tool, uses YAML for playbooks

• Puppet: Uses its own declarative language, good for large-scale deployments

• Chef: Ruby-based, focuses on infrastructure as code

Shift in approach:

Still SSH based (manual CLI mimicking)

Network automation frameworks:

• Paramiko: Python library for connecting to network devices via SSH

• NAPALM (Network Automation and Programmability Abstraction Layer with Multivendor support): Provides a unified API to interact with
different network device Operating Systems

Network Programmability
KEY CONCEPTS AND BENEFITS

Automation

Examples:

• Configuration backups: Automatically backing up device configs daily.

• Compliance checks: Ensuring all devices meet security standards.

• Troubleshooting: Automated collection of diagnostic information.

Shift in approach:

IaC (Infrastructure as Code)

Treating network configurations as software code

Benifits:

• Version control, reproducibility, easier testing and rollback.

Network Programmability
COMMON AUTOMATION TOOLS AND FRAMEWORKS

Configuration management tools:

• Ansible: Agentless automation tool, uses YAML for playbooks

• Puppet: Uses its own declarative language, good for large-scale deployments

• Chef: Ruby-based, focuses on infrastructure as code

Shift in approach:

Network automation frameworks:

• Paramiko: Python library for connecting to network devices via SSH

• NAPALM (Network Automation and Programmability Abstraction Layer with Multivendor support): Provides a unified API to interact with
different network device Operating Systems

Still SSH based (manula CLI mimicking)

Network Programmability
COMMON AUTOMATION TOOLS AND FRAMEWORKS

NETCONF (Network Configuration Protocol):

• RFC 6241

• Uses XML encoding

• Provides a set of operations to manage device configurations

• Runs over SSH, port 830 as default.

• Yang Models are used to model the device’s config.

Shift in approach:

APIs and Protocols

Network Programmability

Shift in approach:

• Defining network configurations in a declarative manner (models, automation scripts)

• Version control for network configurations (for example using git for change tracking and rollbacks)

• Treating network changes like software development (code reviews, testing)

CONFIGURATION AS CODE PRINCIPLES

Network Programmability

Shift in approach:

Scenario: Configuring VLANs across multiple switches using Ansible to orchestrate and automate CLI
configuration.

Step-by-step walkthrough:

• a. Define the desired VLAN configuration in YAML (vlan_config.yml):

EXAMPLE: AUTOMATING VLAN CONFIGURATION WITH ANSIBLE

Network Programmability

Shift in approach:

Step-by-step walkthrough:

• b. Create an Ansible playbook to apply the VLAN
configuration (configure_vlans.yml):

EXAMPLE: AUTOMATING VLAN CONFIGURATION WITH ANSIBLE

Ansible translates the configuration
specified in the cisco.ios.ios_vlans module
into the corresponding CLI commands,
which it then sends to the device over SSH.

• c. Run the playbook and verify the results :

ansible-playbook -i inventory.yml configure_vlans.yml

Network Programmability

Shift in approach:

Step-by-step walkthrough:

• b. Run the playbook and verify the results):

EXAMPLE: AUTOMATING VLAN CONFIGURATION WITH ANSIBLE

ansible-playbook -i inventory.yml configure_vlans.yml

inventory.yml file list all the hosts that
we want to configure:

Network Programmability

Shift in approach:

Benefits:

• Consistency across devices.

• Easy to modify and extend.

• Version controlled.

• Idempotent (can be run multiple times safely).

• Includes verification step.

• Separates data (VLAN definitions) from logic (automation steps).

EXAMPLE: AUTOMATING VLAN CONFIGURATION WITH ANSIBLE

Network Programmability

Shift in approach:

RESTCONF is an API :

• Used instead of CLI.

• Orchestration tools like Ansible can use RESTCONF modules and orchestrate
configurations via RESTCONF and other APIs.

RESTCONF

RESTCONF vs NETCONF:

• NETCONF uses XML for data encoding and typically runs over SSH.

• RESTCONF uses HTTP/HTTPS and supports both XML and JSON.

• NETCONF provides a more extensive set of operations but can be more complex to
implement.

• RESTCONF aligns more closely with RESTful design principles.

Key benefits: simplicity, HTTP-based, JSON support

Network Programmability

Shift in approach:

REST API :

• HTTPS-based communications.

• Stateless

• RESTful API interface for operations

• Verbs for CRUD actions

• Standarized response codes

RESTCONF ARCHITECTURE

Network Programmability

Shift in approach:

RESTCONF protocol:

• RFC 8040.

• Based on XML or JSON for data
encoding

• Using YANG data models

RESTCONF ARCHITECTURE

Network Programmability

Shift in approach:

YANG data models

• RFC 6020.

• Data modeling language

• Models configurations and state of a data of a
device or service

• Organized in nodes

• Several node and data types

• Device Data Models (Interface, VLAN, etc)

• Service Data Models (L3VPN, VRF, etc)

• Industry Santard vs. Vendor Specific

RESTCONF ARCHITECTURE

Network Programmability

Shift in approach:

YANG DATA MODELS

Network Programmability

Shift in approach:

YANG DATA MODELS

Network Programmability

Shift in approach:

RESTCONF EXAMPLE

1. Creating a new VLAN (POST request)

• Import the necessary libraries (requests and
json).

• Disable SSL warnings for sandbox
enviroments.

• Define the base URL for RESTCONF on Cisco
NX-OS (sandbox environment)

• Set headers to indicate the content type and
format (YANG)

• Provide authentication details

Network Programmability

Shift in approach:

RESTCONF EXAMPLE

2. Retrieving interface information (GET request)

• Construct the URL to get interface
information

• Send GET request to retrieve interface data.

• Check the response status and print the
interfaces in a readable format if successful

Network Programmability

Shift in approach:

RESTCONF EXAMPLE

• Container (System): The top-level container for system-level
configurations.

• Container (intf-items): Contains all interface-related
configurations.

• Container (phys-items): Specifically for physical interfaces

• List (PhysIf): List of physical interfaces. Each interface is an entry
in the list.
• Leaf id: Identifier for the interface.
• Leaf descr: Description of the interface.
• Leaf adminSt: Administrative state of the interface (e.g., up or d

own)

Network Programmability

Shift in approach:

RESTCONF EXAMPLE

3. Modifying interface description (PATCH request)

• Define the Interface to be updated

• Create a payload with the new
description

• Send a PATCH request to update the
interface description

• Check the response status confirm
the update

Network Programmability

Shift in approach:

RESTCONF EXAMPLE

4. Creating a new VLAN (POST request)

• Construct the URL to create a new VLAN

• Create a payload with the VLAN details

• Send a POST request to create the VLAN

• Check the response status and confirm the
creation

Network Programmability

Shift in approach:

RESTCONF EXAMPLE

VLAN YANG Model Example

• Container (System): The top-level container for system-level
configurations.

• Container (bd-items): Contains all bridge domain (VLAN) related
configurations.

• List (PhysIf): List of bridge domains (VLANs). Each VLAN
is an entry in the list.
• Leaf fabEncap: Encapsulation method, including the VLANN ID.
• Leaf name: Name of the VLAN.

Network Programmability

Shift in approach:

RESTCONF EXAMPLE

4. Retrieving routing information (GET request)

• Construct the URL to get IPv4
routing information

• Send a GET request to retrieve
routing data

• Send a POST request to create
the VLAN

• Check the response status and
print the routes in a readable
format if successful

Network Programmability

Shift in approach:

RESTCONF EXAMPLE

VLAN YANG Model Example

• Container (System): The top-level container for system-level
configurations.

• Container (ipv4-items): Contains all IPv4-related configurations.

• Container (inst-items): Instance-level configurations for IPv4.

• Container (dom-items): Domain-related configurations.

• List (Dom-list): List of domains. Each domain is an entry in the list.
• Leaf (name): Name of the domain (e.g., default).

• Container (rt-items): Contains routing table entries

• List (Route-list): List of routes. Each route is an entry in the list.
• Leaf (prefix): Prefix of the route.
• Leaf (nextHop): Next-hop address for the route.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

