SDN Control Plane

The organization for the control and guidance of the trade should therefore
be of so complete a character that the trade may be either dispersed about
the ocean or concentrated along particular routes; or in some places
dispersed and in others concentrated; and that changes from one policy to
the other can be made when necessary at any time.

—The World Crisis, Winston Churchill, 1923

After studying this chapter, you should be able
to

m List and explain the key functions of the SDN control plane.

m Discuss the routing function in the SDN controller.

m Understand the ITU-T Y.3300 layered SDN model.

m Present an overview of OpenDaylight.

m Present an overview of REST.

m Compare centralized and distributed SDN controller architectures.

m Explain the role of BGP in an SDN network.

This chapter continues our study of software-defined networking (SDN),
focusing on the control plane (see Figure 5.1). Section 5.1 provides an overview
of SDN control plane architecture, discussing the functions and interface
capabilities of a typical SDN control plane implementation. Next, we summarize
the ITU-T layered SDN model, which provides additional insight into the role of
the control plane. This is followed by a description of one of the most significant
open source SDN controller efforts, known as OpenDaylight. Then Section 5.4
describes the REST northbound interface, which has become common in SDN
implementations. Finally, Section 5.5 discusses issues relating to cooperation
and coordination among multiple SDN controllers.

Application Plane —

Security Apps

Network Apps Business Apps

Programmatic control of
abstracted network resources 1 Northbound API (e.g., REST API)

Control Plane

SDN | WestboundAPI| gpN Eastbound AP SDN
controller B controller B controller

Logically centralized control Southbound API (.g., OpenFlow)
of network resources

i

Virtual switches Physical switches

FIGURE 5.1 SDN Architecture
5.1 SDN Control Plane Architecture

The SDN control layer maps application layer service requests into specific
commands and directives to data plane switches and supplies applications with
information about data plane topology and activity. The control layer is
implemented as a server or cooperating set of servers known as SDN controllers.
This section provides an overview of control plane functionality. Later, we look
at specific protocols and standards implemented within the control plane.

Control Plane Functions

Figure 5.2 illustrates the functions performed by SDN controllers. The figure
illustrates the essential functions that any controller should provide, as suggested
in a paper by Kreutz [KREU15], which include the following:

{ =N
Northbound Interface (e.g., REST)
\ J
e N N (S N (:
Shortest Path Notification Security
East/Westbound b Forwarding y U Manager J L Mechanisms)
Mechanisms &
Fulzeel fi Topology 1 [Ssttistes | [Device 1
I § Manager L Manager) Manager
East/Westbound i]
Interface (e.g., SDNi) k Southbound Interface (e.g., OpenFlow) J

FIGURE 5.2 SDN Control Plane Functions and Interfaces

m Shortest path forwarding: Uses routing information collected from
switches to establish preferred routes.

= Notification manager: Receives, processes, and forwards to an
application events, such as alarm notifications, security alarms, and state
changes.

m Security mechanisms: Provides isolation and security enforcement
between applications and services.

= Topology manager: Builds and maintains switch interconnection
topology information.

m Statistics manager: Collects data on traffic through the switches.

m Device manager: Configures switch parameters and attributes and
manages flow tables.

The functionality provided by the SDN controller can be viewed as a network
operating system (NOS). As with a conventional OS, an NOS provides

essential services, common application programming interfaces (APIs), and an
abstraction of lower-layer elements to developers. The functions of an SDN
NOS, such as those in the preceding list, enable developers to define network
policies and manage networks without concern for the details of the network
device characteristics, which may be heterogeneous and dynamic. The
northbound interface, discussed subsequently, provides a uniform means for
application developers and network managers to access SDN service and
perform network management tasks. Further, well-defined northbound interfaces
enable developers to create software that is independent not only of data plane
details but to a great extent usable with a variety of SDN controller servers.

A number of different initiatives, both commercial and open source, have
resulted in SDN controller implementations. The following list describes a few
prominent ones:

= OpenDaylight: An open source platform for network programmability to
enable SDN, written in Java. OpenDaylight was founded by Cisco and
IBM, and its membership is heavily weighted toward network vendors.
OpenDaylight can be implemented as a single centralized controller, but
enables controllers to be distributed where one or multiple instances may
run on one or more clustered servers in the network.

= Open Network Operating System (ONOS): An open source SDN NOS,
initially released in 2014. It is a nonprofit effort funded and developed by
a number of carriers, such as AT&T and NTT, and other service
providers. Significantly, ONOS is supported by the Open Networking
Foundation, making it likely that ONOS will be a major factor in SDN
deployment. ONOS is designed to be used as a distributed controller and
provides abstractions for partitioning and distributing network state onto
multiple distributed controllers.

= POX: An open source OpenFlow controller that has been implemented by
a number of SDN developers and engineers. POX has a well written API
and documentation. It also provides a web-based graphical user interface
(GUI) and is written in Python, which typically shortens its experimental
and developmental cycles compared to some other implementation
languages, such as C++.

m Beacon: An open source package developed at Stanford. Written in Java
and highly integrated into the Eclipse integrated development
environment (IDE). Beacon was the first controller that made it possible

for beginner programmers to work with and create a working SDN
environment.

m Floodlight: An open source package developed by Big Switch Networks.
Although its beginning was based on Beacon, it was built using Apache
Ant, which is a very popular software build tool that makes the
development of Floodlight easier and more flexible. Floodlight has an
active community and has a large number of features that can be added to
create a system that best meets the requirements of a specific
organization. Both a web-based and Java-based GUI are available and
most of its functionality is exposed through a REST API.

= Ryu: An open source component-based SDN framework developed by
NTT Labs. It is open sourced and fully developed in python.

m Onix: Another distributed controller, jointly developed by VMWare,
Google, and NTT. Onix is a commercially available SDN controller.

=> See Section 5.3, “Open-Daylight”

Perhaps the most significant controller on this list is OpenDaylight, described
subsequently in Section 5.3.

Southbound Interface

The southbound interface provides the logical connection between the SDN
controller and the data plane switches (see Figure 5.3). Some controller products
and configurations support only a single southbound protocol. A more flexible
approach is the use of a southbound abstraction layer that provides a common

interface for the control plane functions while supporting multiple southbound
APIs.

Application Plane
Application or Service

Northbound
API (e.g., REST)

f Northbound I
— | Interface)
East/Westbound
Protocol (e.g., SDNi, = r \
ForCES CE-CE) E 9 SDN Network
SDN B 8 Operating System
Controller € g B (e.g., OpenDaylight,
% = ONOS)
©
w \ J
— Southbound
& Interface)
A
Southbound

Protocol (e.g.,
OpenFlow, ForCES)

Data Plane
Switch

FIGURE 5.3 SDN Controller Interfaces

The most commonly implemented southbound API is OpenFlow, covered in

some detail in Chapter 4, “SDIN Data Plane and OpenFlow.” Other southbound
interfaces include the following:

= Open vSwitch Database Management Protocol (OVSDB): Open
vSwitch (OVS) an open source software project which implements virtual
switching that is interoperable with almost all popular hypervisors. OVS
uses OpenFlow for message forwarding in the control plane for both

virtual and physical ports. OVSDB is the protocol used to manage and
configure OVS instances.

m Forwarding and Control Element Separation (ForCES): An IETF
effort that standardizes the interface between the control plane and the
data plane for IP routers.

m Protocol Oblivious Forwarding (POF): This is advertised as an
enhancement to OpenFlow that simplifies the logic in the data plane to a
very generic forwarding element that need not understand the protocol
data unit (PDU) format in terms of fields at various protocol levels.
Rather, matching is done by means of (offset, length) blocks within a
packet. Intelligence about packet format resides at the control plane level.

Northbound Interface

The northbound interface enables applications to access control plane functions
and services without needing to know the details of the underlying network
switches. The northbound interface is more typically viewed as a software API
rather than a protocol.

Unlike the southbound and eastbound/westbound interfaces, where a number of
heterogeneous interfaces have been defined, there is no widely accepted standard
for the northbound interface. The result has been that a number of unique APIs
have been developed for various controllers, complicating the effort to develop
SDN applications. To address this issue the Open Networking Foundation
formed the Northbound Interface Working Group (NBI-WG) in 2013, with the
objective of defining and standardizing a number of broadly useful northbound
APIs. As of this writing, the working group has not issued any standards.

A useful insight of the NBI-WG is that even in an individual SDN controller
instance, APIs are needed at different “latitudes.” That is, some APIs may be
“further north” than others, and access to one, several, or all of these different
APIs could be a requirement for a given application.

Figure 5.4, from the NBI-WG charter document (October 2013), illustrates the
concept of multiple API latitudes. For example, an application may need one or
more APIs that directly expose the functionality of the controller, to manage a
network domain, and use APIs that invoke analytic or reporting services residing
on the controller.

Interface Scope/Topic (width)

_ App-specific interfaces
(e'g Unified Communicatioﬁs)
V|rtua| Network management

(e.g., OpenStack) QoS path provisioning
Service chaining Loaq
Switching/ balancing
routing Forwarding
Path finder &————*

Topology

Network slicing
(e.g., Flowvisor-like)
Network device abstraction layer
(e.g., OpenDaylight SAL)
Programming language/auto-validation .

&
]

Spectrum of Northbound Interfaces
Abstraction Level (height)

OpenFlow + Switch ID

v @ .
X X XX X X Wi
OpenFlow-controlled switches Non-OF-controlled switches

FIGURE 5.4 Latitude of Northbound Interfaces

Figure 5.5 shows a simplified example of an architecture with multiple levels of
northbound APIs, the levels of which are described in the list that follows.

Self service portal Applications Orchestration

l NBI application APls

Network service APIs

Base controller function APIs

Business logic Implementation

Control plane Implementation

Device facing protocol adapters

FIGURE 5.5 SDN Controller APIs

= Base controller function APIs: These APIs expose the basic functions of
the controller and are used by developers to create network services.

m Network service APIs: These APIs expose network services to the north.

m Northbound interface application APIs: These APIs expose
application-related services that are built on top of network services.

A common architectural style used for defining northbound APIs is
REpresentational State Transfer (REST). Section 5.4 discusses REST.

= See Section 5.4, “REST”

Routing

As with any network or internet, an SDN network requires a routing function. In
general terms, the routing function comprises a protocol for collecting
information about the topology and traffic conditions of the network, and an

