
4
CHAPTER

How SDN Works

In previous chapters we have seen why SDN is necessary and what preceded the actual advent of SDN
in the research and industrial communities. In this chapter we provide an overview of how SDN actually
works, including discussion of the basic components of a Software Defined Networking system, their
roles, and how they interact with one another. In the first part of this chapter we focus on the methods
used by Open SDN. We also examine how some alternate forms of SDN work. As SDN has gained
momentum, some networking vendors have responded with alternate definitions of SDN, which better
align with their own product offerings. Some of these methods of implementing SDN-like solutions
are new (but some are not) and are innovative in their approach. We group the most important of these
alternate SDN implementations in two categories: SDN via existing APIs and SDN via hypervisor-based
overlay networks, which we discuss separately in the latter half of this chapter.

4.1 Fundamental Characteristics of SDN
As introduced in Chapter 3, Software Defined Networking, as it evolved from prior proposals, stan-
dards, and implementations such as ForCES, 4D, and Ethane, is characterized by five fundamental
traits: plane separation, a simplified device, centralized control, network automation and virtualization,
and openness.

4.1.1 Plane Separation
The first fundamental characteristic of SDN is the separation of the forwarding and control planes.
Forwarding functionality, including the logic and tables for choosing how to deal with incoming packets
based on characteristics such as MAC address, IP address, and VLAN ID, resides in the forwarding
plane. The fundamental actions performed by the forwarding plane can be described by the way it
dispenses with arriving packets. It may forward, drop, consume, or replicate an incoming packet. For
basic forwarding, the device determines the correct output port by performing a lookup in the address
table in the hardware ASIC. A packet may be dropped due to buffer overflow conditions or due to
specific filtering resulting from a QoS rate-limiting function, for example. Special-case packets that
require processing by the control or management planes are consumed and passed to the appropriate
plane. Finally, a special case of forwarding pertains to multicast, where the incoming packet must be
replicated before forwarding the various copies out different output ports.

The protocols, logic, and algorithms that are used to program the forwarding plane reside in the
control plane. Many of these protocols and algorithms require global knowledge of the network. The
control plane determines how the forwarding tables and logic in the data plane should be programmed
Software Defined Networks. http://dx.doi.org/10.1016/B978-0-12-416675-2.00004-8
© 2014 Elsevier Inc. All rights reserved.

59



60 CHAPTER 4 How SDN Works

or configured. Since in a traditional network each device has its own control plane, the primary task of
that control plane is to run routing or switching protocols so that all the distributed forwarding tables on
the devices throughout the network stay synchronized. The most basic outcome of this synchronization
is the prevention of loops.

Although these planes have traditionally been considered logically separate, they co-reside in legacy
Internet switches. In SDN, the control plane is moved off the switching device and onto a centralized
controller. This is the inspiration behind Figure 1.6 in Chapter 1.

4.1.2 A Simple Device and Centralized Control
Building on the idea of separation of forwarding and control planes, the next characteristic is the
simplification of devices, which are then controlled by a centralized system running management and
control software. Instead of hundreds of thousands of lines of complicated control plane software
running on the device and allowing the device to behave autonomously, that software is removed from
the device and placed in a centralized controller. This software-based controller manages the network
using higher-level policies. The controller then provides primitive instructions to the simplified devices
when appropriate in order to allow them to make fast decisions about how to deal with incoming packets.

4.1.3 Network Automation and Virtualization
Three basic abstractions forming the basis for SDN are defined in [15]. This asserts that SDN can be
derived precisely from the abstractions of distributed state, forwarding, and configuration. They are
derived from decomposing into simplifying abstractions the actual complex problem of network control
faced by networks today. For a historical analogy, note that today’s high-level programming languages
represent an evolution from their machine language roots through the intermediate stage of languages
such as C, where today’s languages allow great productivity gains by allowing the programmer to simply
specify complex actions through programming abstractions. In a similar manner, [15] purports that
SDN is a similar natural evolution for the problem of network control. The distributed state abstraction
provides the network programmer with a global network view that shields the programmer from the
realities of a network that is actually comprised of many machines, each with its own state, collaborating
to solve network-wide problems. The forwarding abstraction allows the programmer to specify the
necessary forwarding behaviors without any knowledge of vendor-specific hardware. This implies that
whatever language or languages emerge from the abstraction need to represent a sort of lowest common
denominator of forwarding capabilities of network hardware. Finally, the configuration abstraction,
which is sometimes called the specification abstraction, must be able to express the desired goals of the
overall network without getting lost in the details of how the physical network will implement those
goals. To return to the programming analogy, consider how unproductive software developers would be
if they needed to be aware of what is actually involved in writing a block of data to a hard disk when they
are instead happily productive with the abstraction of file input and output. Working with the network
through this configuration abstraction is really network virtualization at its most basic level. This kind
of virtualization lies at the heart of how we define Open SDN in this work.

The centralized software-based controller in SDN provides an open interface on the controller to
allow for automated control of the network. In the context of Open SDN, the terms northbound and
southbound are often used to distinguish whether the interface is to the applications or to the devices.
These terms derive from the fact that in most diagrams the applications are depicted above (i.e., to the



4.2 SDN Operation 61

north of ) the controller, whereas devices are depicted below (i.e., to the south of ) the controller. The
southbound API is the OpenFlow interface that the controller uses to program the network devices. The
controller offers a northbound API, allowing software applications to be plugged into the controller
and thereby allowing that software to provide the algorithms and protocols that can run the network
efficiently. These applications can quickly and dynamically make network changes as the need arises.
The northbound API of the controller is intended to provide an abstraction of the network devices and
topology. That is, the northbound API provides a generalized interface that allows the software above it
to operate without knowledge of the individual characteristics and idiosyncrasies of the network devices
themselves. In this way, applications can be developed that work over a wide array of manufacturers’
equipment that may differ substantially in their implementation details.

One of the results of this level of abstraction is that it provides the ability to virtualize the network,
decoupling the network service from the underlying physical network. Those services are still presented
to host devices in such a way that those hosts are unaware that the network resources they are using are
virtual and not the physical ones for which they were originally designed.

4.1.4 Openness
A characteristic of Open SDN is that its interfaces should remain standard, well documented, and
not proprietary. The APIs that are defined should give software sufficient control to experiment with
and control various control plane options. The premise is that keeping open both the northbound and
southbound interfaces to the SDN controller will allow for research into new and innovative methods of
network operation. Research institutions as well as entrepreneurs can take advantage of this capability
in order to easily experiment with and test new ideas. Hence the speed at which network technology is
developed and deployed is greatly increased as much larger numbers of individuals and organizations
are able to apply themselves to today’s network problems, resulting in better and faster technological
advancement in the structure and functioning of networks. The presence of these open interfaces also
encourages SDN-related open source projects. As discussed in Sections 1.7 and 3.5, harnessing the
power of the open source development community should greatly accelerate innovation in SDN [6].

In addition to facilitating research and experimentation, open interfaces permit equipment from
different vendors to interoperate. This normally produces a competitive environment which lowers
costs to consumers of network equipment. This reduction in network equipment costs has been part of
the SDN agenda since its inception.

4.2 SDN Operation
At a conceptual level, the behavior and operation of a Software Defined Network is straightforward.
In Figure 4.1 we provide a graphical depiction of the operation of the basic components of SDN: the
SDN devices, the controller, and the applications. The easiest way to understand the operation is to
look at it from the bottom up, starting with the SDN device. As shown in Figure 4.1, the SDN devices
contain forwarding functionality for deciding what to do with each incoming packet. The devices also
contain the data that drives those forwarding decisions. The data itself is actually represented by the
flows defined by the controller, as depicted in the upper-left portion of each device.

A flow describes a set of packets transferred from one network endpoint (or set of endpoints) to
another endpoint (or set of endpoints). The endpoints may be defined as IP address-TCP/UDP port



62 CHAPTER 4 How SDN Works

Controller

Data
Forwarding

flows
Data

Forwarding

flows

Data
Forwarding

flows
Data

Forwarding

flows

Data
Forwarding

flows

Data

Forwarding

Data

Forwarding

Data

Forwarding

Data

Forwarding

Data

Forwarding

App App App App

Southbound API

Northbound API

SDN
Devices

High-Performance
Machine

Global Network View

FIGURE 4.1

SDN operation overview.

pairs, VLAN endpoints, layer three tunnel endpoints, and input ports, among other things. One set of
rules describes the forwarding actions that the device should take for all packets belonging to that flow.
A flow is unidirectional in that packets flowing between the same two endpoints in the opposite direction
could each constitute a separate flow. Flows are represented on a device as a flow entry.

A flow table resides on the network device and consists of a series of flow entries and the actions
to perform when a packet matching that flow arrives at the device. When the SDN device receives a
packet, it consults its flow tables in search of a match. These flow tables had been constructed previously
when the controller downloaded appropriate flow rules to the device. If the SDN device finds a match,
it takes the appropriate configured action, which usually entails forwarding the packet. If it does not
find a match, the switch can either drop the packet or pass it to the controller, depending on the version
of OpenFlow and the configuration of the switch. We describe flow tables and this packet-matching
process in greater detail in Sections 4.3 and 5.3.

The definition of a flow is a relatively simple programming expression of what may be a very complex
control plane calculation previously performed by the controller. For the reader who is less familiar with
traditional switching hardware architecture, it is important to understand that this complexity is such that
it simply cannot be performed at line rates and instead must be digested by the control plane and reduced
to simple rules that can be processed at that speed. In Open SDN, this digested form is the flow entry.

The SDN controller is responsible for abstracting the network of SDN devices it controls and pre-
senting an abstraction of these network resources to the SDN applications running above. The controller
allows the SDN application to define flows on devices and to help the application respond to packets that
are forwarded to the controller by the SDN devices. In Figure 4.1 we see on the right side of the controller
that it maintains a view of the entire network that it controls. This permits it to calculate optimal forward-
ing solutions for the network in a deterministic, predictable manner. Since one controller can control
a large number of network devices, these calculations are normally performed on a high-performance



4.2 SDN Operation 63

machine with an order-of-magnitude performance advantage over the CPU and memory capacity than is
typically afforded to the network devices themselves. For example, a controller might be implemented
on an eight-core, 2-GHz CPU versus the single-core, 1-GHz CPU that is more typical on a switch.

SDN applications are built on top of the controller. These applications should not be confused with the
application layer defined in the seven-layer OSI model of computer networking. Since SDN applications
are really part of network layers two and three, this concept is orthogonal to that of applications in the
tight hierarchy of OSI protocol layers. The SDN application interfaces with the controller, using it to
set proactive flows on the devices and to receive packets that have been forwarded to the controller.
Proactive flows are established by the application; typically the application will set these flows when the
application starts up, and the flows will persist until some configuration change is made. This kind of
proactive flow is known as a static flow. Another kind of proactive flow is where the controller decides
to modify a flow based on the traffic load currently being driven through a network device.

In addition to flows defined proactively by the application, some flows are defined in response to a
packet forwarded to the controller. Upon receipt of incoming packets that have been forwarded to the
controller, the SDN application will instruct the controller as to how to respond to the packet and, if
appropriate, will establish new flows on the device in order to allow that device to respond locally the
next time it sees a packet belonging to that flow. Such flows are called reactive flows. In this way, it
is now possible to write software applications that implement forwarding, routing, overlay, multipath,
and access control functions, among others.

There are also reactive flows that are defined or modified as a result of stimuli from sources other
than packets from the controller. For example, the controller can insert flows reactively in response to
other data sources such as intrusion detection systems (IDS) or the NetFlow traffic analyzer [16].

Figure 4.2 depicts the OpenFlow protocol as the means of communication between the controller
and the device. Though OpenFlow is the defined standard for such communication in Open SDN, there

Controller

Data
Forwarding

flows
Data

Forwarding

flows

Data
Forwarding

flows
Data

Forwarding

flows

Data
Forwarding

flows

OpenFlow

Data

Forwarding

Data

Forwarding

Data

Forwarding

Data

Forwarding

Data

Forwarding

FIGURE 4.2

Controller-to-device communication.



64 CHAPTER 4 How SDN Works

are alternative SDN solutions, discussed later in this chapter, that may use vendor-specific proprietary
protocols. The next sections discuss SDN devices, controllers, and applications in greater detail.

4.3 SDN Devices
An SDN device is composed of an API for communication with the controller, an abstraction layer, and
a packet-processing function. In the case of a virtual switch, this packet-processing function is packet-
processing software, as shown in Figure 4.3. In the case of a physical switch, the packet-processing
function is embodied in the hardware for packet-processing logic, as shown in Figure 4.4.

The abstraction layer embodies one or more flow tables, which we discuss in Section 4.3.1. The
packet-processing logic consists of the mechanisms to take actions based on the results of evaluating
incoming packets and finding the highest-priority match. When a match is found, the incoming packet is
processed locally unless it is explicitly forwarded to the controller. When no match is found, the packet
may be copied to the controller for further processing. This process is also referred to as the controller
consuming the packet. In the case of a hardware switch, these mechanisms are implemented by the
specialized hardware we discuss in Section 4.3.3. In the case of a software switch, these same functions
are mirrored by software. Since the case of the software switch is somewhat simpler than the hardware
switch, we will present that first in Section 4.3.2. Some readers may be confused by the distinction
between a hardware switch and a software switch. The earliest routers that we described in Chapter 1
were indeed just software switches. Later, as we depicted in Figure 2.1, we explained that over time
the actual packet-forwarding logic migrated into hardware for switches that needed to process packets
arriving at ever-increasing line rates. More recently, a role has reemerged in the data center for the pure
software switch. Such a switch is implemented as a software application usually running in conjunction
with a hypervisor in a data center rack. Like a VM, the virtual switch can be instantiated or moved under
software control. It normally serves as a virtual switch and works collectively with a set of other such
virtual switches to constitute a virtual network. We discuss this concept in greater depth in Chapter 7.

SW

Abstraction Layer

API Flow TableOpenFlow

Flow TableFlow TableFlow TableFlow TableFlow TableFlow Table

Packet Processing

To Controller

FIGURE 4.3

SDN software switch anatomy.



4.3 SDN Devices 65

HW

Abstraction Layer

API

L3 Fwd L2 Fwd

TCAMs

Flow TableOpenFlow

Flow TableFlow TableFlow TableFlow TableFlow TableFlow Table

To Controller

CAMs

FIGURE 4.4

SDN hardware switch anatomy.

4.3.1 Flow Tables
Flow tables are the fundamental data structures in an SDN device. These flow tables allow the device
to evaluate incoming packets and take the appropriate action based on the contents of the packet that
has just been received. Packets have traditionally been received by networking devices and evaluated
based on certain fields. Depending on that evaluation, actions are taken. These actions may include
forwarding the packet to a specific port, dropping the packet, or flooding the packet on all ports, among
others. An SDN device is not fundamentally different except that this basic operation has been rendered
more generic and more programmable via the flow tables and their associated logic.

Flow tables consist of a number of prioritized flow entries, each of which typically consists of two
components: match fields and actions. Match fields are used to compare against incoming packets. An
incoming packet is compared against the match fields in priority order, and the first complete match
is selected. Actions are the instructions that the network device should perform if an incoming packet
matches the match fields specified for that flow entry.

Match fields can have wildcards for fields that are not relevant to a particular match. For example,
when matching packets based just on IP address or subnet, all other fields would be wildcarded. Similarly,
if matching on only MAC address or UDP/TCP port, the other fields are irrelevant, and consequently
those fields are wildcarded. Depending on the application needs, all fields may be important, in which
case there would be no wildcards. The flow table and flow entry constructs allow the SDN application
developer to have a wide range of possibilities for matching packets and taking appropriate actions.

Given this general description of an SDN device, we now look at two embodiments of an SDN
device: first, the more simple software SDN device and then a hardware SDN device.

4.3.2 SDN Software Switches
In Figure 4.3 we provide a graphical depiction of a purely software-based SDN device. Implementation
of SDN devices in software is the simplest means of creating an SDN device, because the flow tables,


