68 CHAPTER 4 How SDN Works

This section provided an overview of the composition of SDN devices and the considerations that
must be taken into account during their development and their use as part of an SDN application. We
provide further specifics on flow tables, flow entries, and actions in Chapter 5.

4.3.4 Existing SDN Device Implementations

A number of SDN device implementations are available today, both commercial and open source.
Software SDN devices are predominantly open source. Currently, two main alternatives are available:
Open vSwitch (OVS) [4] from Nicira and Indigo [5] from Big Switch. Incumbent network equipment
manufacturers (NEMs), such as Cisco, HP, NEC, IBM, Juniper, and Extreme, have added OpenFlow
support to some of their legacy switches. Generally, these switches may operate in both legacy mode
as well as OpenFlow mode. There is also a new class of devices called white-box switches, which are
minimalist in that they are built primarily from merchant silicon switching chips and a commodity CPU
and memory by a low-cost original device manufacturer (ODM) lacking a well-known brand name. One
of the premises of SDN is that the physical switching infrastructure may be built from OpenFlow-enabled
white-box switches at far less direct cost than switches from established NEMs. Most legacy control
plane software is absent from these devices, since this functionality is largely expected to be provided
by a centralized controller. Such white-box devices often use the open source OVS or Indigo switch
code for the OpenFlow logic, then map the packet-processing part of those switch implementations to
their particular hardware.

4.3.5 Scaling the Number of Flows

The granularity of flow definitions will generally be more fine as the device holding them approaches
the edge of the network and will be more general as the device approaches the core. At the edge, flows
will permit different policies to be applied to individual users and even different traffic types of the same
user. This will imply, in some cases, multiple flow entries for a single user. This level of flow granularity
would simply not scale if it were applied closer to the network core, where large switches deal with
the traffic for tens of thousands of users simultaneously. In those core devices, the flow definitions
will be generally more coarse, with a single aggregated flow entry matching the traffic from a large
number of users whose traffic is aggregated in some way, such as a tunnel, a VLAN, or a MPLS LSP.
Policies applied deep into the network will likely not be user-centric policies but rather policies that
apply to these aggregated flows. One positive result is that there will not be an explosion in the number
of flow entries in the core switches due to handling the traffic emanating from thousands of flows in
edge switches.

4.4 SDN Controller

We have noted that the controller maintains a view of the entire network, implements policy decisions,
controls all the SDN devices that comprise the network infrastructure, and provides a northbound API
for applications. When we have said that the controller implements policy decisions regarding routing,
forwarding, redirecting, load balancing, and the like, these statements referred to both the controller and

4.4 SDN Controller 69

the applications that make use of that controller. Controllers often come with their own set of common
application modules, such as a learning switch, a router, a basic firewall, and a simple load balancer.
These are really SDN applications, but they are often bundled with the controller. Here we focus strictly
on the controller.

Figure 4.5 exposes the anatomy of an SDN controller. The figure depicts the modules that provide the
controller’s core functionality, both a northbound and a southbound API, and a few sample applications
that might use the controller. As we described earlier, the southbound API is used to interface with
the SDN devices. This API is OpenFlow in the case of Open SDN or some proprietary alternative in
other SDN solutions. It is worth noting that in some product offerings, both OpenFlow and alternatives
coexist on the same controller. Early work on the southbound API has resulted in more maturity of
that interface with respect to its definition and standardization. OpenFlow itself is the best example of
this maturity, but de facto standards such as the Cisco CLI and SNMP also represent standardization in
the southbound-facing interface. OpenFlow’s companion protocol, OF-Config [17], and Nicira’s Open
vSwitch Database Management Protocol (OVSDB) [18] are both open protocols for the southbound
interface, though these are limited to configuration roles.

Unfortunately, there is currently no northbound counterpart to the southbound OpenFlow standard
or even the de facto legacy standards. This lack of a standard for the controller-to-application interface
is considered a current deficiency in SDN, and some bodies are developing proposals to standardize it.
The absence of a standard notwithstanding, northbound interfaces have been implemented in a number of
disparate forms. For example, the Floodlight controller [2] includes a Java API and a Representational
State Transfer (RESTful) [13] APL. The OpenDaylight controller [14] provides a RESTful API for
applications running on separate machines. The northbound API represents an outstanding opportunity
for innovation and collaboration among vendors and the open source community.

GUI Lear.nlng Router | wus Others
Switch
'lgl\gll'thbound REST Python Java
AP AP API

Modules S —
Disco & Device Topo Flows
Topo Mgr Stats L]

Southbound
API

OpenFlow

FIGURE 4.5
SDN controller anatomy.

70 CHAPTER 4 How SDN Works

4.4.1 SDN Controller Core Modules

The controller abstracts the details of the SDN controller-to-device protocol so that the applications
above are able to communicate with those SDN devices without knowing their nuances. Figure 4.5
shows the API below the controller, which is OpenFlow in Open SDN, and the interface provided for
applications. Every controller provides core functionality between these raw interfaces. Core features
in the controller include:

¢ End-user device discovery. Discovery of end-user devices such as laptops, desktops, printers,
mobile devices, and so on.

e Network device discovery. Discovery of network devices that comprise the infrastructure of the
network, such as switches, routers, and wireless access points.

¢ Network device topology management. Maintain information about the interconnection details of
the network devices to each other and to the end-user devices to which they are directly attached.

* Flow management. Maintain a database of the flows being managed by the controller and perform
all necessary coordination with the devices to ensure synchronization of the device flow entries with
that database.

The core functions of the controller are device and topology discovery and tracking, flow manage-
ment, device management, and statistics tracking. These are all implemented by a set of modules internal
to the controller. As shown in Figure 4.5, these modules need to maintain local databases containing
the current topology and statistics. The controller tracks the topology by learning of the existence of
switches (SDN devices) and end-user devices and tracking the connectivity between them. It maintains
a flow cache that mirrors the flow tables on the various switches it controls. The controller locally
maintains per-flow statistics that it has gathered from its switches. The controller may be designed such
that functions are implemented via pluggable modules such that the feature set of the controller may be
tailored to an individual network’s requirements.

4.4.2 SDN Controller Interfaces

For SDN applications, a key function provided by the SDN controller is the API for accessing the
network. In some cases, this northbound API is a low-level interface, providing access to the network
devices in a common and consistent manner. In this case, that application is aware of individual devices
but is shielded from their differences. In other instances the controller may provide high-level APIs that
give an abstraction of the network itself, so that the application developer need not be concerned with
individual devices but rather with the network as a whole.

Figure 4.6 takes a closer look at how the controller interfaces with applications. The controller informs
the application of events that occur in the network. Events are communicated from the controller to the
application. Events may pertain to an individual packet that has been received by the controller or some
state change in the network topology, such as a link going down. Applications use different methods to
affect the operation of the network. Such methods may be invoked in response to a received event and
may result in a received packet being dropped, modified, and/or forwarded or the addition, deletion, or
modification of a flow. The applications may also invoke methods independently, without the stimulus
of an event from the controller, as we explain in Section 4.5.1. Such inputs are represented by the “Other
Context” box in Figure 4.6.

4.4 SDN Controller 71

Other Context
[Netflow |[IDS][BGP |

!

Application

A

Events Methods

Controller
North
orthbound REST Python Java
API AP AP AP

FIGURE 4.6
SDN controller northbound API.

4.4.3 Existing SDN Controller Implementations

There are a number of implementations of SDN controllers available on the market today. They include
both open source SDN controllers and commercial SDN controllers. Open source SDN controllers come
inmany forms, from basic C-language controllers such as NOX [7] to Java-based versions such as Beacon
[1] and Floodlight [2]. There is even a Ruby-based [8] controller called Trema [9]. Interfaces to these
controllers may be offered in the language in which the controller is written or other alternatives, such
as REST or Python. An open source controller called OpenDaylight [3] has been built by a consortium
of vendors. Other vendors offer their own commercial versions of an SDN controller. Vendors such as
NEC, IBM, and HP offer controllers that are primarily OpenFlow implementations. Most other NEMs
offer vendor-specific and proprietary SDN controllers that include some level of OpenFlow support.

There are pros and cons to the proprietary alternative controllers. Although proprietary controllers are
more closed than the nominally open systems, they do offer some of the automation and programmability
advantages of SDN while providing a buck stops here level of support for the network equipment. They
permit SDN-like operation of legacy switches, obviating the need to replace older switching equipment
in order to begin the migration to SDN. They do constitute closed systems, however, which ostensibly
violates one of the original tenets of SDN. They also may do little to offload control functionality from
devices, resulting in the continued high cost of network devices. These proprietary alternative controllers
are generally a component of the alternative SDN methodologies we introduce in Section 4.6.

4.4.4 Potential Issues with the SDN Controller

In general, the Open SDN controller suffers from the birthing pains common to any new technology.
Although many important problems are addressed by the concept and architecture of the controller,
there have been comparatively few large-scale commercial deployments thus far. As more commercial
deployments scale, more real-life experience in large, demanding networks will be needed. In particular,

72 CHAPTER 4 How SDN Works

experience with a wider array of applications with a more heterogeneous mix of equipment types is
needed before widespread confidence in this architecture is established. Achieving success in these
varied deployments will require that a number of potential controller issues be adequately addressed. In
some cases, these solutions will come in multiple forms from different vendors. In other cases, a standards
body such as the ONF will have to mandate a standard. In Section 3.2.6 we stated that a centralized
control architecture needed to grapple with the issues of latency, scale, high availability, and security. In
addition to these more general issues, the centralized SDN controller will need to confront the challenges
of coordination between applications, the lack of a standard northbound API, and flow prioritization.

There may be more than one SDN application running on a single controller. When this is the case,
issues related to application prioritization and flow handling become important. Which application
should receive an event first? Should the application be required to pass along this event to the next
application in line, or can it deem the processing complete, in which case no other applications get a
chance to examine and act on the received event?

The lack of an emerging standard for the northbound APl is stymieing efforts to develop applications
that will be reusable across a wide range of controllers. Early standardization efforts for OpenFlow
generally assumed that such a northbound counterpart would emerge, and much of the efficiency gain
assumed to come from a migration to SDN will be lost without it. Late in 2013 the ONF formed a
workgroup that focuses on the standardization of the northbound API (see Table 3.2).

Flows in an SDN device are processed in priority order. The first flow that matches the incoming
packet is acted upon. Within a single SDN application, it is critical for the flows on the SDN device
to be prioritized correctly. If they are not, the resulting behavior will be incorrect. For example, the
designer of an application will put more specific flows at a higher priority (e.g., match all packets
from IP address 10.10.10.2 and TCP port 80) and the most general flows at the lowest priority (e.g.,
match everything else). This is relatively easy to do for a single application. However, when there are
multiple SDN applications, flow entry prioritization becomes more difficult to manage. How does the
controller appropriately interleave the flows from all applications? This is a challenge and requires
special coordination between the applications.

4.5 SDN Applications

SDN applications run above the SDN controller, interfacing to the network via the controller’s north-
bound API. SDN applications are ultimately responsible for managing the flow entries that are pro-
grammed on the network devices using the controller’s API to manage flows. Through this API the
applications are able to (1) configure the flows to route packets through the best path between two
endpoints; (2) balance traffic loads across multiple paths or destined to a set of endpoints; (3) react to
changes in the network topology such as link failures and the addition of new devices and paths, and (4)
redirect traffic for purposes of inspection, authentication, segregation, and similar security-related tasks.

Figure 4.5 includes some standard applications, such as a graphical user interface (GUI) for managing
the controller, a learning switch, and a routing application. The reader should note that even the basic
functionality of a simple layer two learning switch is not obtained by simply pairing an SDN device with
an SDN controller. Additional logic is necessary to react to the newly seen MAC address and update
the forwarding tables in the SDN devices being controlled in such a way as to provide connectivity to
that new MAC address throughout the network while avoiding switching loops. This additional logic is

