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CHAPTER

Why SDN?

Networking devices have been successfully developed and deployed for several decades. Repeaters and
bridges, followed by routers and switches, have been used in a plethora of environments, performing their
functions of filtering and forwarding packets throughout the network toward their ultimate destinations.
Despite the impressive track record of these traditional technologies, the size and complexity of many
modern deployments leaves them lacking. The reasons for this fact include the ever-increasing costs of
owning and operating networking equipment, the need to accelerate innovation in networking, and, in
particular, the increasing demands of the modern data center. This chapter investigates these trends and
describes how they are nudging networking technology away from traditional methods and protocols
toward the more open and innovation-friendly paradigm of SDN.

2.1 Evolution of Switches and Control Planes
We begin with a brief review of the evolution of switches and control planes that has culminated in a
fertile playing field for SDN. This complements the material presented in Sections 1.4 and 1.5. The
reader may find it useful to employ Figure 2.1 as a visual guide through the following sections; it
provides a graphical summary of this evolution and allows the reader to understand the approximate
timeframes when various switching components moved from software to hardware.

2.1.1 Simple Forwarding and Routing Using Software
In Chapter 1 we discussed the early days of computer networking, when almost everything other than
the physical layer (layer one) was implemented in software. This was true for end-user systems as
well as for networking devices. Whether the devices were bridges, switches, or routers, software was
used extensively inside the devices in order to perform even the simplest of tasks, such as MAC-level
forwarding decisions. This remained true even through the early days of the commercialized Internet
in the early 1990s.

2.1.2 Independence and Autonomy in Early Devices
Early network device developers and standards creators wanted each device to perform in an autonomous
and independent manner to the greatest extent possible. This was because networks were generally small
and fixed, with large shared domains. A goal also was to simplify rudimentary management tasks and
make the networks as plug and play as possible. Devices’ relatively static configuration needs were
performed manually. Developers went to great lengths to implement this distributed environment with
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Networking functionality migrating to hardware.

intelligence resident in every device. Whenever coordination between devices was required, collective
decisions could be made through the collaborative exchange of information between devices.

Interestingly, many of the goals of this distributed model, such as simplicity, ease of use, and automatic
recovery, are similar to the goals of SDN, but as the scale and complexity of networks grew, the current
distributed model has become increasingly dysfunctional.

Examples of this distributed intelligence are the layer two (bridging) and layer three (routing) pro-
tocols, which involved negotiation between the devices in order to reach a consensus on the way
forwarding and routing would be performed. We introduced these protocols in Chapter 1 and provide
more SDN-specific details on them here.

• Spanning Tree Protocol.
Basic layer two forwarding, also known as transparent bridging, can be performed independently
by each switch in the network. However, certain topologies require an imposition of a hierarchy on
the network in order to prevent loops, which would cause broadcast radiation. The Spanning Tree
Protocol (STP) is an example of the operation of autonomous devices participating in a distributed
decision-making process to create and enforce a hierarchy on the network. The result is the correct
operation of transparent bridging throughout the domain at the expense of convergence latency and
possibly arbitrary configuration. This solution was a tradeoff between cost and complexity. Multiple
paths could have been supported but at greater cost. STP was adequate when networks were of
smaller scale, but as networks grew the spanning tree solution became problematic. These problems
manifest themselves in a striking fashion when networks reach the scale of the modern data center.
For example, IEEE 802.1D specifies the following default timers for STP: 15 seconds for listening,
15 seconds for learning, and 20 seconds for max-age timeout. In older networks, convergence times
of 30–50 seconds were common. Such delays are not acceptable in today’s data centers. As the scale
of the layer two network grows, the likelihood of greater delays increases. The Rapid Spanning Tree
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Protocol (RSTP) protocol, specified in IEEE 802.1D-2004 [6], improves this latency significantly
but unfortunately is not deployed in many environments.

• Shortest-Path Bridging.
STP allowed only one active path to a destination, suffered from relatively slow convergence times
and was restricted to small network topologies. Although the newer implementations of STP have
improved the convergence times, the single active path shortcoming has been addressed in a new
layer two protocol, Shortest-Path Bridging (SPB), introduced in Section 1.5.1. SPB is a mechanism
for allowing multiple concurrent paths through a layer two fabric via collaborative and distributed
calculation of shortest and most efficient paths, then sharing that information among the participating
nodes in the meshed network. This characteristic is called multipath. SPB accomplishes this goal by
utilizing IS-IS to construct a graph representing the layer two link-state topology. Once this graph
exists, shortest-path calculations are straightforward, though more complex than with spanning tree.
To elaborate on what we mean by shortest-path calculations, in Figure 2.2 we depict a simple graph
that can be used for calculating shortest paths in a network with five switches. The costs assigned to
the various links may be assigned their values according to different criteria. A simple criterion is to
make the cost of a network link inversely proportional to its bandwidth. Thus, the cost of transiting
a 10 Gbps link is one-tenth that of transiting a 1 Gbps link. When the shortest-path calculation is
complete, the node performing the calculation knows the least-cost path to any of the other nodes
in the network. The least-cost path is considered the shortest path. For the sake of clarity, we should
point out that IS-IS is used in the SPB context strictly for layer two path calculation. This differs
from its classical application in calculating layer three routes, as described below. In the trivial
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example of Figure 2.2, there is a single shortest path from node A to every other node. In real-
life networks it is common for there to be more than one least-cost path between two nodes. The
multipath characteristic of SPB would allow the traffic to be distributed across those multiple paths.

• RIP, BGP, OSPF, and IS-IS.
Routing at layer three requires cooperation between devices in order to know which routers are
attaching which subnets to the network. In Chapter 1 we provided background on four routing
protocols: RIP, BGP, OSPF, and IS-IS. These routing protocols involve the sharing of local routing
information by each device, either at the edge of the network or as an intermediate node. Their col-
lective sharing of information allows the routing state to converge as devices share their information
with each other. Each router remains autonomous in terms of its ability to make routing decisions
as packets arrive. This process is one of peers sharing and negotiating among themselves, without a
centralized entity aiding in the decision.

2.1.3 Software Moves into Silicon
Figure 2.1 shows that over time these functions moved from software into hardware. We now see most
forwarding and filtering decisions implemented entirely in hardware. These decisions are driven by con-
figured tables set by the control software above. This movement into hardware of the lower-level decision
making has yielded tremendous benefits in terms of lowering device costs and increasing performance.

Today switching devices are typically composed of hardware components such as application-
specific integrated circuits (ASICs), fully programmable gate arrays (FPGAs), and ternary content-
addressable memories (TCAMs). The combined power of these integrated circuits allows the
forwarding decisions to be made entirely in the hardware at line rate. This performance has become
more critical as network speeds have increased from 1 Gbps to 10 Gbps to 40 Gbps and beyond. The
hardware is now capable of handling all forwarding, routing, access control list (ACL), and QoS deci-
sions. Higher-level control functions, responsible for network-wide collaboration with other devices,
are implemented in software. This control software runs independently in each network device.

2.1.4 Hardware Forwarding and Control in Software
The network device evolution we have recounted thus far has yielded the following current situation:

• Bridging (layer two forwarding).
Basic layer two MAC forwarding of packets is handled in the hardware tables.

• Routing (layer three forwarding).
To keep up with today’s high-speed links and to route packets at link speeds, layer three forwarding
functionality is also implemented in hardware tables.

• Advanced filtering and prioritization.
General traffic management rules such as ACLs, which filter, forward, and prioritize packets, are
handled via hardware tables located in the hardware (e.g., in TCAMs) and accessed through low-level
software.

• Control.
The control software used to make broader routing decisions and to interact with other devices in
order to converge on topologies and routing paths is implemented in software that runs autonomously
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inside the devices. Since the current control plane software in networking devices lacks the ability
to distribute policy information about such things as security, QoS, and ACLs, these features must
still be provisioned through relatively primitive configuration and management interfaces.

Given this landscape of (1) layer two and layer three hardware handling most forwarding tasks, (2)
software in the device providing control plane functionality, and (3) policy implemented via configu-
ration and management interfaces, an opportunity presents itself to simplify networking devices and
move forward to the next generation of networking.

2.1.5 The Growing Need for Simplification
In [12] the authors state that one of the major drivers for SDN is simplification. As time has passed,
networking devices have become increasingly complex. This is due in part to the existing independent
and autonomous design of devices that make it necessary for so much intelligence be placed inside each
device. Placing more functionality in hardware in some ways simplifies the device but in other ways
makes the device more complicated because of the difficult handshakes and tradeoffs between handling
packets in hardware versus software.

Attempting to provide simplicity by adding features to legacy devices tends to complicate implemen-
tations rather than simplifying them. An analogy to the evolution of the central processing unit (CPU)
can be made here. Over time CPUs became overly complex as they attempted to support more and more
functions until ultimately that model of CPU was abandoned in favor of a simpler, easier-to-use CPU
model called reduced instruction set computing (RISC). In the same way the RISC architecture served as
a reset to CPU architecture, so too may SDN serve as a simplifying reset for network equipment design.

In addition to simplifying the devices themselves, there is an opportunity to simplify the management
of the networks of these devices. Rather than using primitive network management tools such as SNMP
and CLI, network operators would prefer to use policy-based management systems. SDN may enable
such solutions [13].

2.1.6 Moving Control Off the Device
We remind the reader that control software in our context is the intelligence that determines optimal
paths and responds to outages and new networking demands. At its core, SDN is about moving that
control software off the device and into a centrally located compute resource that is capable of seeing the
entire network and making decisions that are optimal, given a complete understanding of the situation.
Though we will discuss this in much greater detail in the chapters that follow, basically SDN attempts
to segregate network activities in the following manner:

• Forwarding, filtering, and prioritization.
Forwarding responsibilities, implemented in hardware tables, remain on the device. In addition,
features such as filtering based on ACLs and traffic prioritization are enforced locally on the device
as well.

• Control.
Complicated control software is removed from the device and placed into a centralized controller,
which has a complete view of the network and the ability to make optimal forwarding and rout-
ing decisions. There is a migration to a programming paradigm for the control plane. The basic
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forwarding hardware on the networking device is available to be programmed by external soft-
ware on the controller. The control plane is no longer embedded, closed, closely coupled with the
hardware, or optimized for particular embedded environments.

• Application.
Above the controller is where the network applications run, implementing higher-level functions
and, additionally, participating in decisions about how best to manage and control packet forwarding
and distribution within the network.

Subsequent chapters will examine in greater detail how this segregation can be achieved with a
minimum of investment and change by networking vendors while providing the maximum control and
capability by the controller and its applications. The next section of this chapter discusses another major
reason that SDN is needed today: the cost of networking devices.

2.2 Cost
Arguments related to the need for SDNs often include cost as a driving factor for this shift [1,2]. In
this section we consider the impact of the status quo in networking on the cost of designing, building,
purchasing, and operating network equipment.

2.2.1 Increased Cost of Development
Today’s autonomous networking devices must store, manage, and run the complicated control plane
software that we discussed in the previous section. The result of these demands on the device is mani-
fested in increased cost per device due to the processing power required to run that advanced software
as well as the storage capacity to hold it.

In Chapter 1 we described how software development outside the networking realm benefits greatly
from the readily available open source software. For example, application server frameworks provide
platforms that allow software developers to reuse code provided by those common frameworks and
therefore to concentrate on solving domain-specific problems. Without the ability to leverage software
functionality in this manner, each vendor would have to develop, test, and maintain large amounts of
redundant code, which is not the case in an open software environment. With the closed networking
environment that is prevalent today, little such leverage is available, and consequently each vendor must
implement all of the common functionality required by their devices. Common network functionality
and protocols must be developed by every device vendor. This clearly increases the costs attributable
to software development.

In recent years, silicon vendors have been producing common off-the-shelf (COTS) ASICs that
are capable of speeds and functionalities that rival or surpass the proprietary versions developed by
networking hardware vendors. However, given the limited software leverage mentioned, vendors are
not able to efficiently make use of their merchant silicon chips, since software must be reengineered for
each product line. That limited ability to leverage the merchant silicon results in higher costs, which
are passed along to the customer.

So, though their products may be quite profitable, NEMs must write and support larger amounts
of software than would otherwise be necessary if networking devices were developed in truly open
environments. The fact that such a large body of software must run on each and every network device
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serves to further increase this cost. There is additional overhead resulting from the requirement to support
multiple versions of legacy protocols as well as keeping up with the latest protocols being defined by
standards bodies.

2.2.2 Closed Environments Encourage Vendor Lock-in
It is true that over the years standards have been developed in the networking space for most relevant
protocols and data that are used by switches and routers. For the most part, vendors do their best to
implement these standards in a manner that allows heterogeneous networks of devices from multiple
vendors to coexist with one another.

However, in spite of good intentions by vendors, enhancements are often added to these standard
implementations, which attempt to allow a vendor’s product to outperform its competition. With many
vendors adding such enhancements, the end result is that each vendor product will have difficulty
interoperating smoothly with products from another vendor. Adherence to standards helps alleviate the
issues associated with attempting to support multiple vendor types in a network, but problems with
interoperability and management often far outweigh the advantages that might be gained by choosing
another vendor. As a result, customers frequently become effectively married to a vendor they chose
years or even decades before. This sort of vendor lock-in alleviates downward pressure on cost because
the vendor is largely safe from competition and can thus preserve high profit margins.

2.2.3 Complexity and Resistance to Change
Quite often in networking we arrive at a point of having made the network operational, and the normal
impulse from that point on is to just leave things as they are, to not disturb things lest the system break
and require us to start all over again. Others may have been burned by believing the latest vendor that
proposed a new solution and, when the dust settled, their closed, proprietary, vendor-specific solution
was just as complex as that of the previous vendor.

Unfortunately, in spite of efforts at standardization, there is still a strong argument to stay with that
single-vendor solution. Often, that closed, complex solution may be easier to deploy precisely because
there is only one vendor involved, and that vendor’s accountability is not diluted in any way. By adopting
and embracing a solution that works, we believe we lower our short-term risk. That resistance to change
results in long-term technological stagnation and sluggishness. The ideal would be a simpler, more
progressive world of networking, with open, efficient, and less expensive networking devices. This is a
goal of SDN.

2.2.4 Increased Cost of Operating the Network
As networks become ever larger and more complex, the operational expense (OPEX) of the network
grows. This component of the overall costs is increasingly seen to be more significant than the corre-
sponding capital expense (CAPEX) component. SDN has the capacity to accelerate the automation of
network management tasks in a multivendor environment [3,4]. This, combined with the fact that SDN
will permit faster provisioning of new services and provides the agility to switch equipment between
different services [5], should lead to lower OPEX with SDN. In Section 13.2.6 we examine proposals
whereby SDN may be used in the future to reduce the power consumption of the networking equipment
in a data center, which is another major contributor to network OPEX.
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2.3 SDN Implications for Research and Innovation
Networking vendors have enjoyed an enviable position for over two decades. They control networking
devices from the bottom up: the hardware, the low-level firmware, and the software required to produce
an intelligent networking device. This platform on which the software runs is closed, and consequently
only the networking vendors themselves can write the software for their own networking devices.

The reader should contrast this to the world of software and computing, where you can have many
different hardware platforms created by multiple vendors and consisting of different and proprietary
capabilities. Above that hardware reside multiple layers of software, which ultimately provide a common
and open interface to the application layer. The Java Virtual Machine and the Netbeans Integrated
Development Environment provide a good example of cross-platform development methods. Using
such tools, we can develop software that may be ported between Windows PC, Linux, or Apple Mac
environments. Analogously, tablets and smartphones, such as iPhones or Android-based phones, can
share application software and run on different platforms with relative ease. Imagine if only Apple were
able to write software for Apple products and only Microsoft were able to write software to run on PCs
or Windows-based servers? Would the technological advances we have enjoyed in the last decade have
taken place? Probably not.

In [11] the authors explain that this status quo has negatively impacted innovation in networking. In
the next section, we examine this relationship and how, on the contrary, the emergence of SDN is likely
to accelerate such innovation.

2.3.1 Status Quo Benefits Incumbent Vendors
The collective monopolies extant in the networking world today are advantageous to networking vendors.
Their only legitimate competition comes from their fellow established NEMs. Although periodically
new networking companies emerge to challenge the status quo, that is the exception rather than the rule.
The result is that the competitive landscape evolves at a much slower pace than it would in a truly open
environment. This is due to limited incentives to invest large amounts of money when the current status
quo is generating reasonable profits due primarily to the lack of real competition and the resulting high
margins they are able to charge for their products.

Without a more competitive environment, the market will naturally stagnate to some degree. The
incumbent NEMs will continue to behave as they have in the past. The small players will struggle to
survive, attempting to chip away at the industry giants but with limited success, especially since the
profit margins of those giants are so large. This competition-poor environment is unhealthy for the
market and for the consumers of products and services. Consider the difference in profit margins for a
server vendor versus those for a networking vendor. Servers are sold at margins close to 5% or below.
Networking device margins can be as high as 30% or more for the established vendors.

2.3.2 SDN Promotes Research and Innovation
Universities and research labs are focal points of innovation. In technology, innovations by academia and
other research organizations have accelerated the rate of change in numerous industries. Open software
environments such as Linux have helped to promote this rapid pace of advancement. For instance, if
researchers are working in the area of operating systems, they can look at Linux and modify its behavior.
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If they are working in the area of server virtualization or databases, they can look at KVM or Xen and
MySQL or Postgres. All of these open source packages are used in large-scale commercial deployments.
There is no equivalent in networking today. Unfortunately, the current closed nature of networking soft-
ware, network protocols, network security, and network virtualization is such that it has been challenging
to experiment, test, research, and innovate in these areas. This fact is one of the primary drivers of SDN
[1]. A number of universities collaborated to propose a new standard for networking called OpenFlow,
which would allow for this free and open research to take place. This makes one wonder if SDN will
ultimately be to the world of networking what Linux has become to the world of computing.

General innovation, whether from academia or by entrepreneurs, is stifled by the closed nature of
networking devices today. How can a creative researcher or entrepreneur develop a novel mechanism
for forwarding traffic through the Internet? That would be nearly impossible today. Is it reasonable for
a startup to produce a new way of providing hospitality-based networking access in airports, coffee
shops, and malls? Perhaps, but it would be required to run across network vendor equipment such as
wireless access points (APs) and access switches and routers that are themselves closed systems. The
more that the software and hardware components of networking are commoditized, the lower their cost
to customers. SDN promises both the hardware commoditization as well as openness, and both of these
factors contribute to innovation.

To be fair, though, one must keep in mind that innovation is also driven by the prospect of generating
wealth. It would be naïve to imagine that a world of low-cost networking products will have a purely
positive impact on the pace of innovation. For some companies, the lower product margins presaged
by SDN will reduce their willingness to invest in innovation. We examine this correlation and other
business ramifications of SDN in Chapter 12.

2.4 Data Center Innovation
In Section 1.3 we explained that in the last few years, server virtualization has caused both the capacity
and the efficiency of data centers to increase exponentially. This unbounded growth has made possible
new computing trends such as the cloud, which is capable of holding massive amounts of comput-
ing power and storage capacity. The whole landscape of computing has changed as a result of these
technological advances in the areas of compute and storage virtualization.

2.4.1 Compute and Storage Virtualization
Virtualization technology has been around for decades. The first commercially available VM technology
for IBM mainframes was released in 1972 [7], complete with the hypervisor and the ability to abstract
the hardware below, allowing multiple heterogeneous instances of other operating systems to run above
it in their own space. In 1998 VMware was established and began to deliver software for virtualizing
desktops as well as servers.

Use of this compute virtualization technology did not explode until data centers became prevalent
and the need to dynamically create and tear down servers, as well as moving them from one physical
server to another, became important. Once this occurred, however, the state of data center operations
immediately changed. Servers could be instantiated with a mouse click and could be moved without
significantly disrupting the operation of the server being moved.
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Server virtualization: creating a new VM instance.

Creating a new VM or moving a VM from one physical server to another is a straightforward process
from a server administrator’s perspective and may be accomplished very rapidly. Virtualization software,
such as VMware, Hyper-V, KVM, and Citrix, are examples of products that allow server administrators
to readily create and move virtual machines. These tools have reduced the time needed to start up a new
instance of a server to a matter of minutes or even seconds. Figure 2.3 shows the simple creation of a
new instance of a virtual machine on a different physical server.

Likewise, storage virtualization has existed for quite some time, as has the concept of abstracting
storage blocks and allowing them to be separated from the actual physical storage hardware. As with
servers, this achieves efficiency in terms of speed (e.g., moving frequently used data to a faster device) as
well as in terms of utilization (e.g., allowing multiple servers to share the same physical storage device).

These technological advancements allow servers and storage to be manipulated quickly and effi-
ciently. Although these advances in computer and storage virtualization have been taking place, the
same has not been true in the networking domain [8].

2.4.2 Inadequacies in Networks Today
In Chapter 1 we discussed the evolution of networks that allowed them to survive catastrophic events
such as outages and hardware or software failures. In large part, networks and networking devices have
been designed to overcome these rare but severe challenges. However, with the advent of data centers,
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there is a growing need for networks to not only recover from these types of events but also to be able
to respond quickly to frequent and immediate changes.

Although the tasks of creating a new network, moving a new network, and removing a network are
similar to those performed for servers and storage, doing so requires work orders, coordination between
server and networking administrators, physical or logical coordination of links, network interface cards
(NICs), and ToR switches, to name a few. Figure 2.4 illustrates the elapsed time in creating a new
instance of a VM, which is on the order of minutes, compared to the multiple days that it may take to
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create a new instance of a network. This is because the servers are virtualized, yet the network is still
purely a physical network. Even when we are configuring something virtual for the network, such
as a VLAN, making changes is more cumbersome than in their server counterparts. In Chapter 1 we
explained that although the control plane of legacy networks had sophisticated ways of autonomously
and dynamically distributing layer two and layer three states, no corresponding protocols exist for dis-
tributing the policies that are used in policy-based routing. Thus, configuring security policy, such as
ACLs or virtualization policy such as to which VLAN a host belongs, remains static and manual in
traditional networks. Therefore, the task of reconfiguring a network in a modern data center does not
take minutes but rather days. Such inflexible networks are hindering IT administrators in their attempts
to automate and streamline their virtualized data center environments. SDN holds the promise that the
time required for such network reconfiguration be reduced to the order of minutes, such as is already
the case for reconfiguration of VMs.

2.5 Data Center Needs
The explosion of the size and speed of data centers has strained the capabilities of traditional networking
technologies. We discuss these needs briefly here and cover them in greater detail in Chapter 7. This
section serves as an indication of new requirements emerging from the technological advances taking
place now in data center environments.

2.5.1 Automation
Automation allows networks to come and go at will, following the movements of servers and storage as
needs change. This is sometimes referred to as agility—the ability to dynamically instantiate networks
and to disable them when they are no longer needed. This must happen fast, efficiently, and with a mini-
mum of human intervention. Not only do networks come and go—they also tend to expand and contract.
Clearly, it may require a dynamic, agile, and automated network to keep pace with these changes.

2.5.2 Scalability
With data centers and cloud environments, the sheer number of end stations that connect to a single
network has grown exponentially. The limitations of MAC address table sizes and number of VLANs
have become impediments to network installations and deployments. The large number of physical
devices present in the data centers also poses a broadcast control problem. The use of tunnels and
virtual networks can contain the number of devices in a broadcast domain to a reasonable number.

2.5.3 Multipathing
Accompanying the large demands placed on the network by the scalability requirement we’ve stated is
the need for the network to be efficient and reliable. That is, the network must make optimal use of its
resources, and it must be resistant to failures of any kind; and, if failures do occur, the network must be
able to recover immediately. Figure 2.5 shows a simple example of multipath through a network, both
for choosing the shortest path as well as for alternate or redundant paths. Legacy layer two control plane
software would block some of the alternate and redundant paths shown in the figure in order to eliminate
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forwarding loops. Because we are living with network technology invented years ago, the network is
forced into a hierarchy that results in links that could have provided shortest-path routes between nodes
lying entirely unused and dormant. In cases of failure, the current hierarchy can reconfigure itself in a
nondeterministic manner and with unacceptable latency. The speed and high-availability requirements
of the modern data center mandate that multiple paths not be wasted by being blocked and, instead, be
put into use to improve efficiency as well as to achieve resiliency and load balancing.

2.5.4 Multitenancy
With the advances in data center technology described above and the subsequent advent of cloud
computing, the idea of hosting dozens or even hundreds or thousands of customers, or tenants, in the
same physical data center has become a requirement. One set of physical hardware hosting multiple
tenants has been feasible for some time in the server and storage area. Multitenancy implies that the
data center has to provide each of its multiple tenants with its own (virtual) network that it can manage
in a manner similar to the way it would manage a physical network.

2.5.5 Network Virtualization
The urgency for automation, multitenancy, and multipathing has increased as a result of the scale and
fluidity introduced by server and storage virtualization. The general idea of virtualization is that you
create a higher-level abstraction that runs on top of the actual physical entity you are abstracting. The
growth of compute and storage server virtualization has created demand for network virtualization.
This means having a virtual abstraction of a network running on top of the actual physical network.
With virtualization, the network administrator should be able to create a network anytime and anywhere
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he chooses, as well as expanding and contracting networks that already exist. Intelligent virtualization
software should be capable of this task without requiring the upper virtualized layer to be aware of what
is occurring at the physical layer.

Server virtualization has caused the scale of networks to increase as well, and this increased scale
has put pressure on layer two and layer three networks as they exist today. Some of these pressures
can be alleviated to some degree by tunnels and other types of technologies, but fundamental network
issues remain, even in those situations. Consequently, the degree of network virtualization required to
keep pace with data center expansion and innovation is not possible with the network technology that
is available today.

To summarize, advances in data center technology have caused weaknesses in the current networking
technology to become more apparent. This situation has spurred demand for better ways to construct
and manage networks [9], and that demand has driven innovation around SDN [10].

2.6 Conclusion
The issues of reducing cost and the speed of innovation as motivators for SDN will be recurring themes
in the balance of this work. The needs of the modern data center are so tightly linked with the demand
for SDN that we dedicate all of Chapter 7 to the examination of use cases in the data center that
benefit from SDN technology. These needs did not appear overnight, nor did SDN simply explode onto
the networking scene in 2009, however. There were a number of tentative steps over many years that
formed the basis for what ultimately appeared as the SDN revolution. In the next chapter we review this
evolution and examine how it culminated in the birth of what we now call SDN. We also discuss the
context in which SDN has matured and the organizations and forces that continue to mold its future.
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