Configuration and
Management of
Networks

Pedro Amaradl

Configuration and Management of Networks

Evolution of Network functionality

~1990 ~1995 ~2000 ~2005
—
Control > Software
QoS, ACLs, Control
Routing, QoS, ACLs,
Layer 2 Forwarding, Control _J
Routing, QoS, ACLs, =
Control QoS, ACLs
Routing Routing
+ Hardware
Layer 2 Forwarding Layer 2 Forwarding Layer 2 Forwarding
Physical Physical Physical Physical
-- TIMe --cceccccmccccccmccccccccccccccccccccccp

Software Moves into silicon

Forwarding in Hardware and Control in Software

Configuration and Management of Networks

Current Networks are expensive and complex:

Complexity and Vendor Lock in

Resistance to change difficulty to innovate

Expensive Hardware

Difficult to configure and operate (large
OPEX)

Most important : Networks are inadequate for some modern
applications

Ex: Cloud Datacenters

Configuration and Management of Networks

Data Center Network challenges

Create another instance of Network 1 on Switch B downlinks, uplink,
Aggregation Switch C downlink, etc.: Elapsed time = DAYS

Aggregation Switch C

l_ Network 1

Top of Rack Switch A

Network 1

Top of Rack Switch B

Physical Server A

Physical Server B

Create another instance of VM1 on Physical Server B: Elapsed time = MINUTES

Hypervisor A Hypervisor B
VM VM VM VM VM VM VM VM
1 2 3 4 1 2' 3' 4'
\ A

Configuration and Management of Networks

Data center Network needs:

* Automation

 Scalability (MAC table sizes and VLANSs, broadcast
control problems)

* Multipathing

* Mutitenancy (virtual Networks)

Shortest path: Speed and efficiency
Alternate and redundant paths: Resiliency, high availability and load balancing

Switch Switch

Redundant
paths

Alternate paths

Shortest path

Switch Switch

Configuration and Management of Networks

Software Defined Networks — Control and data separation

Control Plane: Logic for controlling forwarding behavior.
Examples: Routing protocols, network middlebox configuration.

Forwarding Plane: Forwarding traffic according to control plane
logic.
Examples: IP forwarding, L2 switching, MPLS label switching.

Independent evolution and development: The
software control can evolve independently from

— the hardware.

Allows

Control from high level software program :
Control behavior using high-order programs

Configuration and Management of Networks

Software Defined Networks — Control and data separation

Application Plane [

Security Apps

I
Network Apps

Business Apps

A
Programmatic control of
abstracted network resources

Y

Northbound API (e.g., REST API)

Control Plane

SDN I8 Westbound API . SDN Eastbound API o SDN
controller controller controller
. ' A
Logically centralized control Southbound API (e.g., OpenFlow)
of network resources
Y
Data Plane

—H

Virtual switches

Physical switches

Configuration and Management of Networks

Software Defined Networks — Control and data separation

High-Performance
Machine

App

App

App

App

Northbound API

Controller

Global Network View

N

Southbound API

[Data_ | [Data |

| Forwarding | [Forwarding |

E ==
Forwarding | | Forwarding | |_Forwarding | SDN
Devices
flows
Data
Forwarding | Forwarding | _J

Configuration and Management of Networks

Software Defined Networks — OpenFlow Southbound API

Controller

[Daa] [Daa | [paa]
l Forwarding] l Forwarding] l Forwarding l
[oam | [omw |
Forwarding Forwarding

OpenFlow _/

Forwarding \

flows

Data

Forwarding \

Forwarding

Forwarding \

Configuration and Management of Networks

Software Defined Networks — Controller

GUI Lear.nlng Router Others
Switch
Other Context
North [Netflow |[DS H BGP |
AI?’:t pound REST Python Java l
API API API
Application

Modules —]
Disco & ’ Device ETopoj Events Methods

Flows
Topo Mgr Stats] Controller
Northbound
REST Python Java
Southbound API AP AP API
API | OpenFlow

Configuration and Management of Networks

Software Defined Networks — OpenFlow Southbound API

OpenFlow Controller

OpenFlow OpenFlow OpenFlow

/ / N\

P g |

Flow Tables Flow Tables Flow Tables

Forwarding Plane Forwarding Plane Forwarding Plane

Configuration and Management of Networks

Software Defined Networks — OpenFlow Forwarding Plane

Flow Tables: Perform packet lookup.
« All packets compared to flow table for match

* Instructions depending on match being found
* Packets that do not match are either sent to the controller (OF 1.0)
or discarded (OF 1.3 and after)

Secure Channel: Communication to the controller (TCP connection or
TLS connection).

Configuration and Management of Networks

Software Defined Networks — OpenFlow Forwarding Plane

OpenFlow Controller

A

OpenFlow Protocol

Y

(Y) Pkt Out
Secure Channel
(Y) Pktout A PktIn
Local In E @
Packet- =0 [Action |
Matching I
Function : + @
L Drop
@ Pkt
Local Out y
Port 1| [Port2| |Port3| |Port4 nmnm Port K| anm Port N

» A. Forward the packet out a local port, possibly modifying certain header fields first.
* B. Drop the packet.
o (. Pass the packet to the controller.

Configuration and Management of Networks

Software Defined Networks — Packet Matching

Match fields Priority Counters Instructions Timeouts Cookie | Flags
0 Emmeggc (a) Flow Table Entry Fields
e
s T
'
I
l
l
Ingr | Egr | Ethr | Ethr | Ethr | IP |IPv4 | IPv4|IPv6|IPv6 | TCP | TCP |UDP|UDP
port | port| SA | DA |Type| port| SA | DA | SA | DA | Src |Dest| Src | Dest

(b) Flow Table Match Fields (required fields)

m Match fields: Used to select packets that match the values in the fields.

m Priority: Relative priority of table entries. This is a 16-bit field with 0

corresponding to the lowest priority. In principle, there could be 21° = 64k
priority levels.

Configuration and Management of Networks

Software Defined Networks — Packet Matching

Ingr | Egr | Ethr | Ethr
port | port| SA | DA

Ethr
Type

IP
port

(b) Flow Table Match Fields (required fields)

m Counters: Updated for matching packets.

Counter Usage
Reference count (active entries) Per flow table

Duration (seconds) Per flow entry

Received packets Per port
Transmitted packets Per port
Duration (seconds) Per port

Bit Length
32
32
64
64
32

m Instructions: Instructions to be performed if a match occurs.

m Timeouts: Maximum amount of idle time before a flow is expired by the
switch. Each flow entry has an idle_timeout and a hard_timeout

Configuration and Management of Networks

Software Defined Networks — Packet Matching

Match fields I Priority | Counters l Instructions Timeouts I Cookie | Flags I

ingr | Egr | Ethr | Ethr | Ethr | 1P [1Pv4 [1Pv4 | 1Pv6 | 1Pv6 | TcP | TcP |uDP |UDP
port | port | SA | DA [Type| port| SA | DA | SA | DA | src |Dest| Src | Dest

(b) Flow Table Match Fields (required fields)

m Cookie: 64-bit opaque data value chosen by the controller. May be used
by the controller to filter flow statistics, flow modification and flow
deletion; not used when processing packets.

m Flags: Flags alter the way flow entries are managed; for example, the flag
OFPFF_SEND_FLOW_REM triggers flow removed messages for that
flow entry.

Configuration and Management of Networks
Software Defined Networks — Instructions

Instructions: Can be grouped in four categories:

m Direct packet through pipeline: The Goto-Table instruction directs the
packet to a table farther along in the pipeline.

m Perform action on packet: Actions may be performed on the packet
when it is matched to a table entry. The Apply-Actions instruction applies
the specified actions immediately

m Update action set: The Write-Actions instruction merges specified
actions into the current action set for this packet.

Configuration and Management of Networks

Software Defined Networks — Instructions
Types of actions:

m Output: Forward packet to specified port. The port could be an output
port to another switch or the port to the controller. In the latter case, the
packet is encapsulated in a message to the controller.

m Group: Process packet through specified group.

m Push-Tag/Pop-Tag: Push or pop a tag field fora VLAN

m Set-Field: The various Set-Field actions are identified by their field type
and modify the values of respective header fields in the packet.

m Change-TTL: The various Change-TTL actions modify the values of the
IPv4 TTL (time to live), IPv6 hop limit, or MPLS TTL in the packet.

m Drop: There is no explicit action to represent drops. Instead, packets
whose action sets have no output action should be dropped.

Configuration and Management of Networks

Software Defined Networks —-Switch operation

Packet in
* dear action set
« initialize pipeline fields

« start at table 0
Yes
Update counters: No Execute action set:
Match in Execute instruction set: Goto » update packet headers <«
» update action set table n? » update match set fields
» update packet headers * update pipeline fields
* update match set fields *
* update pipeline fields
* as needed, clone packet
to egress

)

Drop packet

Packet out

Configuration and Management of Networks

Software Defined Networks — Group Table

Group tables and group actions enable OpenFlow to represent a set of
ports as a single entity for forwarding packets.

Group Tables are filled with Group Entries:

= Group identifier: A 32-bit unsigned integer uniquely identifying the
group. A group is defined as an entry in the group table.

m Group type: To determine group semantics, as explained subsequently.
m Counters: Updated when packets are processed by a group.

m Action buckets: An ordered list of action buckets, where each action
bucket contains a set of actions to execute and associated parameters.

Configuration and Management of Networks

Software Defined Networks — Group Table

1 Packet 1 Packet

Clone

Random selection
(b) Type = select

""" Packet "1 Packet

First live bucket
(c) Type = fast failover (d) Type = indirect

Configuration and Management of Networks

Software Defined Networks — Flow Table Example:

Header Fields Counters Actions Priority
If ingress port == Drop packet 32768
if IP_addr == 129.79.1.1 re-write to :)%3;1’ forward | 3576g
if Eth Addr == 00:45:23 add VLANpig rt1 ;O’ forward | 35768
if ingress port == forward port 5, 6 32768
if Eth Type == ARP forward CONTROLLER 32768
I ingreﬁjp%"f:/fép&& Eth forward NORMAL 40000
Each Flow Table entry has two timers: idle_timeout hard_timeout
seconds of no matching packets seconds after which the flow is
after which the flow is removed removed

zero means never timeout 7ero0 mean never timeout

Configuration and Management of Networks

Software Defined Networks — OpenFlow Messages:

Message Description

Controller to Switch

Features Request the capabilities of a switch. Switch responds with a
features reply that specifies its capabilities.

Configuration Set and query configuration parameters. Switch responds with
parameter settings.

Modify-State Add, delete, and modify flow/group entries and set switch port
properties.

Read-State Collect information from switch, such as current configuration,
statistics, and capabilities.

Packet-out Direct packet to a specified port on the switch.

Barrier Barrier request/reply messages are used by the controller to

ensure message dependencies have been met or to receive
notifications for completed operations.

Role-Request Set or query role of the OpenFlow channel. Useful when switch
connects to multiple controllers.

Asynchronous- Set filter on asynchronous messages or query that filter. Useful
Configuration when switch connects to multiple controllers.

Asynchronous
Packet-in
Flow-Removed

Port-Status
Role-Status

Controller-Status

Flow-monitor

Symmetric
Hello

Echo
Error

Experimenter

Configuration and Management of Networks

Software Defined Networks — OpenFlow Messages:

Transfer packet to controller.

Inform the controller about the removal of a flow entry from a
flow table.

Inform the controller of a change on a port.

Inform controller of a change of its role for this switch from mas-
ter controller to slave controller.

Inform the controller when the status of an OpenFlow channel
changes. This can assist failover processing if controllers lose
the ability to communicate among themselves.

Inform the controller of a change in a flow table. Allows a con-
troller to monitor in real time the changes to any subsets of the
flow table done by other controllers.

Exchanged between the switch and controller upon connection
startup.

Echo request/reply messages can be sent from either the switch
or the controller, and must return an echo reply.

Used by the switch or the controller to notify problems to the
other side of the connection.

For additional functionality.

Configuration and Management of Networks

Software Defined Networks — Control Plane

Controller typical functions

Northbound Interface (e.g., REST)

[Y [shortestPath | [Notification | Security
East/Westbound _ Forwarding | [Manager | Mechanisms

Mechanisms &

Protocols f Topology) Statistics A 0 Device

8 5 Manager Manager) Manager

East/Westbound
Llnterface (e.g., SDNi) Southbound Interface (e.g., OpenFlow)

Configuration and Management of Networks

Software Defined Networks — Control Plane

Most prominent Controllers

m OpenDaylight: An open source platform for network programmability to
enable SDN, written in Java. OpenDaylight was founded by Cisco and
IBM, and its membership is heavily weighted toward network vendors.

m Open Network Operating System (ONOS): An open source SDN NOS,
initially released in 2014. It is a nonprofit effort funded and developed by

a number of carriers, such as AT&T and NTT, and other service providers.

* Ryu: An open source component-based software defined networking
framework supports various protocols for managing network devices,

such as OpenFlow, Netconf, OF-config, etc.

m Floodlight: An open source package developed by Big Switch Networks.
Although its beginning was based on Beacon, it was built using Apache
Ant, which is a very popular software build tool that makes the
development of Floodlight easier and more flexible.

Configuration and Management of Networks

Software Defined Networks — Control Plane

Interfaces

East/Westbound
Protocol (e.g., SDNi,

ForCES CE-CE)
SDN

Application Plane

Application or Service

Northbound

API (e.g., REST)

Controller -

)

East/Westbound
Interface

\

Northbound
Interface

SDN Network
Operating System
(e.g., OpenDaylight,
ONOS)

[

Southbound
Interface

A

Southbound
Protocol (e.g.,

OpenFlow, ForCES)

Data Plane
Switch

Configuration and Management of Networks

Software Defined Networks — Control plane SDNs

Northbound API

Programming Interface for applications and orchestration system. Several
“latitudes” are needed

Interface Scope/Topic (width
P pe/Topic () -

4 App-specmc interfaces
(e g., Unified Communlwtlons)
Vlrtual Network management
(e.g., OpenStack) ® QoS path provisioning

Service chaining ! ILoac"
itchi alancin
Switching/ g

routing Forwarding
Path finder

Topology *——*

C.G.R

Network slicing .
(e.g., Flowvisor-like)
Network device abstraction layer /
(e.g., OpenDaylight SAL)
. Programming language/auto-validation .

Spectrum of Northbound Interfaces
Abstraction Level (height)

OpenFlow + Switch ID i

PSP -—— -—— -——
— —— —— —

&l
&k
&l
=k

Configuration and Management of Networks

Software Defined Networks — Control plane SDNs

Logically Distributed Controllers

East/Westbound
SDN Domain Protocol SDN Domain
Controller Controller
g
5 S
S O
(/? & — — 7 *_‘,’“\ — — 7 *_“,’-‘\
— / / \ — / \
¥4 \}{s e ¥ 4 / \ \}’;s
f\~ > — T ~ \~ > — -
S e T L e e = T
Data transfer
protocols

m Scalability: The number of devices an SDN controller can feasibly
manage is limited. Therefore, a reasonably large network may need to
deploy multiple SDN controllers.

= Reliability: The use of multiple controllers avoids the risk of a single
point of failure.

Configuration and Management of Networks

Software Defined Networks — Programming SDNs

OpenFlow: Programming at this level of abstraction is not easy!

+ Difficult to perform multiple independent tasks (e.g. routing, access
control)
* OpenFlow is a low level of abstraction

« Race Conditions, if switch-level rules are not installed properly

Configuration and Management of Networks

Software Defined Networks — Programming SDNs Application
Design

Reactive Application
ﬁ‘ Process Packet
o vV
= (0] (o)})
2 g & © c O
Sl 3| @ xgo||lg o
wllall2 83| |L S
= a<| %<
(@)
= Packets forwarded ResDonse
to controller Listener APls AFI;IS
Switch
« Match: ..., Action=CONTROLLER SDN Controller

= Match: ..., Action=NORMAL
= Take action on received packet

= Make flow changes as appropriate

= Match: <else> Action=CONTROLLER

e
<

Configuration and Management of Networks

Software Defined Networks — Programming SDNs Application
Design

Proactive Application
Network | Event Configure
Events 7| Listener Flows
REST APls

2113

5|54

E = o

, o3|t Flow Pusher
Switch
- Match: ..., Action=CONTROLLER SDN Controller

= Match: ..., Action=NORMAL

= Match: <else> Action=DROP = Set flows on devices

N

Configuration and Management of Networks

Software Defined Networks —

controller
Circuit OpenStack
Pusher Quantum Plugin
(python) (python)

Module Applications

VNE _RJ Stati<_RJ

Flow
Entry
Firewall .EJ Pusher

PortDown

Reconciliation Forwarding

Learning—RJ

il Switch

Applications with
higher bandwidth
communication
with controller
such as Packetln's

Java API

Programming SDNs Floodlight

REST Applications

Applications in any language leveraging services via REST
APl exposed by controller modules and module applications

REST API

R
Module_J

Manager

2

Device
Manager

R
Switches

Thread

Floodlight Controller

R |
Jython We Unit
Server Ul Tests

Packet
Pool Streamer

Topology . RJ
Manager/

Routing

R
Link _J

Discovery

Flow Storage _EJ
Cache*

Memory '

NoSqI* :

-'-'—-—'

OpenFIow Services

Controller =~ PerfMon Trace Counte
Memory Store

Core services of common interest to SDN applications

* Interfaces defined only & not implemented: FlowCache, NoSql

Configuration and Management of Networks

Software Defined Networks — Programming SDNs Floodlight
controller - examples

Configurations of the modules to run (*.properties file):

=\
. Tloodlightcontroller.storage.memory.MemoryStorageSource,\
. floodlightcontroller.core.internal.FloodlightProvider,\
. Tloodlightcontroller.threadpool. ThreadPool,\
. Tloodlightcontroller.perfmon.PktInProcessingTime,\
. Tloodlightcontroller.staticentry.StaticEntryPusher,\
. Tloodlightcontroller.topology.TopologyManager,\
. Tloodlightcontroller. linkdiscovery. internal.LinkDiscoveryManager,\
. floodlightcontroller.devicemanager. internal.DeviceManagerImpl,\
. floodlightcontroller.CGRL2Switch.CGRL2Switch

OO~ OYOD S WN =2

2
S O

=6633
=ACTIVE
=YES
=YES
=/path/to/your/keystore-file. jks
=your-keystore-password

19

2
1

o J
14
15
16
17

. floodlightcontroller. loadbalancer.LoadBalancer

. floodlightcontroller. linkdiscovery. internal.LinkDiscoveryManager
. floodlightcontroller.devicemanager. internal.DeviceManagerImpl

. floodlightcontroller.firewall.Firewall

. floodlightcontroller.accesscontrollist.ACL

. floodlightcontroller.dhcpserver.DHCPServer

. floodlightcontroller. learningswitch.LearningSwitch

. floodlightcontroller.statistics.StatisticsCollector
-floodliahtcontraller. routina.RoutinoManacer

.floodliéhtcontroller.CGRLZSwitch.CGRLZSwitch

Configuration and Management of Networks

Software Defined Networks — Programming SDNs Floodlight
controller - examples

Treating the reception of a Packet_In message:

blic class CGRmodule imp

Override
Command receive(IOFSwitch sw, OFMessage msg, FloodlightContext cntx) {
(msg.getType()) {

PACKET_IN
this.processPacketInMessage(sw, (OFPacketIn) msg, cntx);

FLOW_REMOVED
this.processFlowRemovedMessage(sw, (OFFlowRemoved) msg);

ERROR

log.info("received an error {} from switch {}", msg, sw);

Command . CONTINUE;

log.error("received an unexpected message {} from switch {}", msg, sw);
Command . CONTINUE;

Configuration and Management of Networks

Software Defined Networks — Programming SDNs Floodlight
controller - examples

Treating the reception of a Packet_In message:

Command processPacketInMessage(IOFSwitch sw, OFPacketIn pi, FloodlightContext cntx) {
OFPort inPort = (pi.get\) ireTo(0OFVersion.0F_12) < @ 7 pi. InPort() : pi.getMatch(). (MatchField.IN_PORT));

/*Read the Packet_In Message Payload (EThernet packet) in to an Ethernet Objectx/
Ethernet eth = IFloodlightProviderService.bcStore. (cntx, IFloodlightProviderService.CONTEXT_PI_PAYLOAD);
/* Read packet header attributes into a Match object */
M. /dress sourceMac = eth. purceMACA ss();
s destMac = eth. MACAddress();
if (sourceMac == null) {
sourceMac = MacAddress.NONE;

if (destMac ==)
destMac = MacAddress.NONE;

}

if ((destMac.getlLong() & @xfffffffffffOL) = 0x0180c2000000L) {

if (log.isTraceEnal ()) {

log. ("ignoring packet addressed to 802.1D/Q reserved addr: switch {} dest MAC {}",
new Object[]{ sw, destMac.toStr () });

}

return Command.STOP;
}
if ((!sourceMac.isBr ())&&(!sourceMac. isM ())) {

log. i ("Unicast packet received: switch {} Ethertype {}",

new Object[]{ sw, eth. Et Type() });
/ If source MAC is a unicast address, learn the port for this MAC/VLAN

}
//check if port for destination MAC is known
// IT so output flow-mod and/or packet

//for now it floods trough all ports like a hub.
witchCommands. PacketOutPacketIn(sw, OFPort.FLOOD, pi);

Configuration and Management of Networks

Software Defined Networks — Programming SDNs Floodlight
controller - examples

Creating rules:

boolean installRule(IOFSwitch sw, TableIld table, short priority,
Match matchCriteria, List<OFInstruction> instructions,List<0OFAction> actions,
short hardTimeout, short idleTimeout, OFBufferId bufferId, boolean ReceivedRemoved)

{

"~ OFFlowMod.Builder rule = sw.getOFFactory().buildFlowAdd();
rule.setHardTimeout (hardTimeout);
rule.setIdleTimeout(idleTimeout);
rule.setPriority(priority);
rule.setTableld(table);
rule.setBufferId(bufferId)4

rule.setMatch(matchCriteria);
(instructions null){
rule.setInstructions(instructions);

}

(actions !=null){
rule.setActions(actions);

}

Set<OFFlowModFlags> sfmf HashSet<0OFFlowModFlags>();
(ReceivedRemoved) {
sfmf.add (OFFlowModFlags.SEND_FLOW_REM) ;
rule.setFlags(sfmf);
}

sw.write(rule.build());
log.debug("Installing rule: "+rule);

(Exception e)
log.error("Failed to install rule: "+rule);

false;

true;

Configuration and Management of Networks

Software Defined Networks — Programming SDNs Floodlight
controller - examples

Creating Match clause; Actions and ApplyActions Instruction :
Match createMatchFromPacket(IOFSwitch sw, OFPort inPort, FloodlightContext cntx) {

Ethernet eth = IFloodlightProviderService.bcStore.get(cntx, IFloodlightProviderService.CONTEXT_PI_PAYLOAD);
MacAddress srcMac = eth.getSourceMACAddress();
MacAddress dstMac = eth.getDestinationMACAddress();

Match.Builder mb = sw.getOFFactory().buildMatch();
mb.setExact(MatchField.IN_PORT, inPort)
.setExact(MatchField.ETH_SRC, srcMac)
.setExact(MatchField.ETH_DST, dstMac);

mb.build();

OFActions actions = sw.getOFFactory().actions();
List<OFAction> al ArrayList<OFAction>();
OFActionOutput output = actions.buildOutput()
.setPort(outPort)
. setMaxLen(@xffFFffFF)
.build();
al.add(output);

(pi.getVersion().compareTo(OFVersion.0F_13)==0){
OFInstructions instructions sw.getOFFactory().instructions();
OFInstructionApplyActions applyActions = instructions.buildApplyActions().setActions(al).build();
ArrayList<OFInstruction> instructionList ArrayList<OFInstruction>();
instructionList.add(applyActions);

Configuration and Management of Networks

SDN - Programmable Data plane (P4)

Configuration: POpu!atmg
Installing and
P4 Program :
querying rules
Compiler

Rule
Translator
\ J

|

Target Switch

Parser & Table |
Configuration |

l

e

Ve

—_—

processed

switches

4

Classic
OpenFlow

P4—used to configure a switch, telling it how packets are to be

OpenFlow - designed to populate the forwarding tables in fixed function

Tell the switch how to operate, rather than be
constrained by a fixed switch design

Configuration and Management of Networks

SDN - Programmable Data plane (P4)

PISA (Protocol Independent Switch Architecture) : Flexible Match+Action ASICs
o Intel Flexpipe, Cisco Doppler, Cavium (Xpliant), Barefoot Tofino, ...

NPU (Network processing unit)
o EZchip, Netronome, ...

CPU (Virtual Software Devices)
> Open Vswitch, eBPF, DPDK, VPP...

FPGA

o Xilinx, Altera, ...

4

These devices let us tell them how to process packets.

Configuration and Management of Networks

P4 — Example simple switch:

] \
1 1
| | Parse Control Table Action E
]
! | Graph Program | | Config Set E
1
s — " S—— Y
1 b 3
Forwarding Forwarding
rules rules
v
| p v B x; 0}
A U u
N R F T
P = Match —» Match —»
U > Action F Action P
T E E U
R Ingress Pipeline R Egress Pipeline T
| Packet Mods + Packet Mods
Egress Selection

* Programmable parser to allow new headers (Openflow assumes a fixed parser)
* OpenFlow assumes the match+action stages are in series, in P4 they can be in

parallel.

Configuration and Management of Networks

P4 : (Based in Protocol-Independent Switch Architecture)

Programmer defines the
tables and the exact
Programmer declares the } processing algorithm

how the output packet
headers that should be will look on the wire
recognized and their order in

the packet

[Programmer declares

Programmable Match-Action Pipeline
Programmable A Programmable

Parser N Deparser

\

::11
~| |—m
o OO =
S

Configuration and Management of Networks

P4 : (Based Protocol-Independent Switch Architecture)

Packet is parsed into individual headers (parsed representation)
Headers and intermediate results can be used for matching and
actions

Headers can be modified, added or removed

Packet is deparsed (serialized)

Programmable A Programmable

Parser 4 N\ Deparser

Configuration and Management of Networks

P4 : Program example

#include <core.p4d>
#include <vlmodel.p4d>
struct metadata {}
struct headers {}

parser MyParser(packet_in packet,
out headers hdr,
inout metadata meta,
inout standard_metadata_t standard metadata) {

state start { transition accept; }

}

control MyVerifyChecksum(inout headers hdr, inout metadata
meta) { apply { } }

control MyIngress(inout headers hdr,
inout metadata meta,
inout standard_metadata_t standard metadata) {
apply {
if (standard_metadata.ingress_port == 1) {
standard_metadata.egress_spec = 2;
} else if (standard_metadata.ingress_port == 2) {
standard_metadata.egress_spec = 1;

}

control MyEgress(inout headers hdr,

inout metadata meta,

inout standard_metadata_t standard metadata) {
) apply { }

control MyComputeChecksum(inout headers hdr, inout metadata
meta) {

apply { }
}
control MyDeparser(packet out packet, in headers hdr) {
apply { }
}
ViSwitch(
MyParser(),
MyVerifyChecksum(),
MyIngress(),
MyEgress(),
MyComputeChecksum(),
MyDeparser()
) main;

Configuration and Management of Networks

Software Defined Networks — Flavours

So far we have been discussing Open SDN:

$

Generic Hardware — no functionality besides forwarding tables

Other flavours include — API based SDN:

» This can be seen as Network Management SDN

Spectrum of SDN technologies

Less disruptive More disruptive
More evolutionary More revolutionary
Less risk More risk

AR A A R

Traditional NETCONF BGP-LS/PCEP Proactive Reactive
network OpenFlow OpenFlow
management

Configuration and Management of Networks

Software Defined Networks — API based SDN- using existing
protocols

App || App | | App

BGP-LS/PCEP overview PCE BGP-LS BGP

I Link state topology

Py
o
c
—
o
=
@
=h
(]
Q
—
o
=

IPv4 topology:
Note: BGP IPv4 Topo comes from route reflector |

.‘. 3 coge [
coe [
Route reflector Izl

 BGP-LS is used to pass link-state (OSPF or IS-1S) Interior Gateway Protocol (IGP) information
about topology to ODL.

e PCE-P is used to transmit routing information from the PCE Server to the PCE clients in the
network. A PCE client is also more simply known as a Path Computation Client (PCC).

 MPLS will be used to forward packets throughout the network, using the Label Switched Paths
(LSPs) transmitted to head-end nodes via PCE-P.

Configuration and Management of Networks

Software Defined Networks — API based SDN- control points

SDN control points I PTr

Routing Information Base (RIB)

Forwarding Information Base (FIB)

- Management plane
(device configuration)

Control plane
(routing (prefix+next hop))

Forwarding plane
(matches+actions)

Protocol

NETCONF
BGP-LS

BGP
PCE-P

BGP-FS

Table 7.1 Comparison of Existing Protocols for SDN

Control Point

Config

RIB
MPLS

Flows

Details

Interfaces, ACLs, Static routes

Topology discovery is used to pass link-state
IGP information about topology to ODL.
Topology discovery and setting RIB

PCE to set MPLS LSPs. Used to transmit routing
information from the PCE Server to the

PCE Clients in the network.

BGP-FlowSpec to set matches and actions

Configuration and Management of Networks

Software Defined Networks — API based SDN- Netconf

OpenFlow devices NETCONF devices
App App
Device Device / \
Security Policy ...Etc

Successor to the SNMP (Simple Network Management) NETCONF has:

* Support for Remote Procedure Calls : Invoke operation in a device.
» Support for Notifications: Managed device can notify management station of events

Only configures the exposed capabilities of the device

Uses XML to communicate with devices, or a REST API (RESTCONF)

Configuration and Management of Networks

Software Defined Networks — API based SDN- BGP

—_——— e — — a1

Obtain [Pv4 topology:

« BGP plugin in controller implements a BGP node

RIB configuration:

» Controller uses BGP plugin to advertise routes (injecting routes)

Configuration and Management of Networks

Software Defined Networks — API based SDN- BGP-LS/PCE-P

A REST App
°P BGP-LS [[%jj

_—— = ="

= I ===

BGP-LS — Used to obtain link state IGP information to controller

PCE-P — Used to set LSP paths that unlike traditional LSPs can be
inter-domain

Configuration and Management of Networks

Software Defined Networks — Via Overlay Virtual Networks

One of the prevailing solutions for Data centre Networks

- N
-(‘ED Physical Server | | Physical Server | | Physical Server
3
)
Z
>
L
g Hypervisor Hypervisor Hypervisor
4 « N
% ’ Network Device |—‘ Network Device ’
()
Z
S
@ ’ Network Device ’ Network Device ’ Network Device |
\i J
MAC header| IP header [UDP header Payload

—

Tunnel header | IMAC header| IP header |UDP header Payload

Configuration and Management of Networks

Software Defined Networks — Via Overlay Virtual Networks

SDN is done with a controller interacting with virtual switches:

Virtual Switches reside in the Hypervisors and connect VMs

Traffic is forwarded between VSwitches via tunnels
Controller knows end hosts macs, and mappings to tunnels
Controller can use OpenFlow to configure VSwitchs and create

the overlay networks.

Several Tunneling mechanisms

VXLAN (cisco)

NVGRE (Microsoft)
STT (Nicira VMware)

Configuration and Management of Networks

Software Defined Networks — Via Overlay Virtual Networks

. VXL . Outer MAC/IP/UDP header VXLAN header Outer payload
ys &N (ClSCO) Original packet
Dest | Source % Source | Dest Src UDP | Dst UDP VXLAN Dest | Source
MAC | MAC ||> P IP Port 4789 Net ID MAC | MAC Payload
24-bit Original host dest &
Source/Dest Dynamically \XLAN UDP Network identifier source and payload

MAC & IP of switch generated by port = 4789
tunnel endpoints hashing

Outer MAC/IP/UDP header GRE header Outer payload

Original packet

[) NVGRE (Microsoft) Dest | Source Hg Source | Dest ;ﬁg:zlt Dest | Source Payload

MAC MAC P P D MAC MAC
24-bit Original host dest &
Source/dest Network identifier source and payload
MAC & IP of switch
tunnel endpoints
Outer MAC/IP/UDP header STT header Outer payload
Original packet
Dest | Source % Source | Dest Src UDP | Dst TCP Context Dest | Source
MAC MAC = 1P P Port 7471* ID MAC MAC Payload
 STT (Nicira VMware)
64-_bit B Original host dest &
Source/dest STT TCP Context identifier source and payload
MAC & IP of switch Port = 7471*

tunnel endpoints *=currently

Configuration and Management of Networks

Software Defined Networks — Via Overlay Virtual Networks

rlost Overlay Applicati

\ s ~ verlay Application Wy
- = Who “owns” this destination N~

(TunnSeYvIIEtrc:onint) host's IP address? I\;Ir:::;r Host
= Does tunnel exist from this ﬂ/
switch to the switch that owns llo o \]/ M~

the destination host’s IP? 2112|% Q@ % Tunnel
« If not, create the tunnel using Sl B o L \EE/

appropriate mechanism. = oo
o J

= set up tunnel

P
~

W

Switch » Unmatched IP Destinations Lo Al Re:g?nse
i)
(Tunnel Endpoint)

Floodlight Controller

= Match: IP, NW_DST=1.1.1.5, Action=Tunnel-23
= Match: IP, NW_DST=1.1.9.2, Action=Tunnel-12
= Match: IP, Action=CONTROLLER

= Install IP flow to forward through
appropriate tunnel

OpenFlow _)

Configuration and Management of Networks

5 G networks and SDN-NFV

5G Networks - Requirements

Availability
e Data Rate
Sccurity
ke &
Gy Low-latency
Mobility Ry
QoE 5G Service Quality
& & Energy
User Efficiency
Experience Business Requirements
QoE-aware
Billing Context-aware
& Network

Pricing

Configuration and Management of Networks

5 G networks and SDN-NFV

5G Networks - Convergence between computing (Cloud) and
communication systems (Network).

« Service platforms
deployed at clouds in i eiios il
the core or micro-clouds
at the edge:

o Fog computing (computing
along the network)

o MEC (edge computing e.g. in
base To’nons

« Composed of
generalized Virtual
Functions (VFs) providing
Applications and
Network services

Edge
Network

VF: Virtual Functions (fog/10T) ﬁ@#

Configuration and Management of Networks

5 G networks and NFV

Physical - Compute,

Transportation Control

storage, Network (Back-end-
DCs, MEC and Fog; Core

Personal Entertainment

Captrol /

)Guidance” £

Ne'l'work Ond R AN) . R . IL;::.gisticsf Ma;agt?mtent S’ﬂfefIEI:ICEI | t?iiitization

. . . olutions Tor Society 0ocClal-Value Platrorm £
Virtual - Application T Ty T —————
functions and Network & =) -
functions as virtualized d Vs e
instances or entities (provide il sl A o) [) [])
Ser\/ices iﬂ iSO|OTiOﬂ) Y Assets of Verticals _VAS Functions Network Functions 4
Value - Top Level . -y — o
consuming APIs from virtual a2l foe

layer (With functional service

........

and operational
requirements)

Network

Management & Orchestration

- —
[s \}ﬁ(oss/ass]

Configuration and Management of Networks

5 G networks and NFV

Service
Pl [5G Service and Business Applications]

f / L ,.' — P
.;.u \ ‘ -‘-- L@, _,l' 4
;_-,‘-";_‘ =t ‘_"’-‘ E’ L, . ! |) Internel J
IOT fﬁlo Autonomous smfmm a3 > ‘ -r
slice car slice shce Network Cloud ™™o’
() e SR (8) (€) | (D)

Software network technologies in 5G architecture. A indicates RAN; B = transport networks; C = core networks
and D represents the Internet.

Configuration and Management of Networks

5 G networks and NFV

« 5G Slicing Concept:

o Multiple logical self-contained
networks, orchestrated in different ways
according to their specific service
requirements.

o Temporarily owned by Tenants (A slice
includes Physical, Virtualization and
Service Layer — also called a Vertical)

o Set of virtual network functions that run
on the same infrastructure with a

tailored orchestration. S @ /) o= lig= /W
@c,g,s)’ R /= ﬁﬁm 2 Fﬁ
&/ lim ““imE= W

5G Edge 5G Transport 5G Core

Configuration and Management of Networks

5 G networks and NFV

Challenges:

« Seamless and flexible management of physical and
virfualized resources across the three tiers.

* Agile end-to-end service orchestration for each respective
service verfical, where each vertical may have mulfiple
service instances.

« Enabling end-to-end connectivity services to each service
iInstance, which is also programmable.

SDN and NFV —Key technologies:

* NFV - Virtualized Services (Cloud)
* Flexibility, Agility and Scalability.

* SDN - Programmable connectivity
* Dynamic steering of traffic.

Configuration and Management of Networks

Network Function Virtualization (NFV)

NFV — Virtualizing classic Network functions (e.g. routers, firewalls,
DPI, Load balancers and Evolved Packet Core nodes)

Classic network Software Vendors
appliance approach
CEER CHER CEEm i | &
Message ~ CDN Session Virtual Applianges
controller

WAN DPI Firewall
acceleration

Carrier- Tester/QoE SGSN/
grade NAT monitor GGSN = == ==
O] L] [—=1
_ _ _ Standard high-volume servers
PE BRAS Radio access
router network
nodes
» Fragmented non-commodity hardware Standard high-volume storage
« Physical install per appliance per site
» Hardware development large barrier
to entry for new vendors, constraining

i ti d titi
innovation and competition Standard high-volume Ethernet switches

Configuration and Management of Networks
Network Function Virtualization (NFV)

High Level NFV framework

Virtualized Network Functions (VNFs)

NFV Infrastructure (NFVI)

£ & || i

Virtual Virtual Orchestration
storage network

Virtualization Layer |

Configuration and Management of Networks

NFV - MANO

 NFV Management And Orchestration (MANO)

NFV Management and
Orchestration .
* Network Function
Os-Ma . . .
] 05SBSS L | oo Virtualization Orchestrator
T | NFVO)
=k Or-Vnfm Sewﬁﬁ&VNF (¢
o — s et o * Manages network services.
== = = ’ A . On-boarding of network
+— & i T service descriptions.
® P S VRN " S— =T Vivnfm
NFVI . .
e Virtual Network Function
Virtual Virtual Virtual
I Computing Storage Network I Manager (VFNM).
Virtualizaiion Layer NEVi Virtualized .
e] ' s * Life-cycle of a VNF.
, Herdare resources Connects to VNFs or their
Computing Storage Network
Hardware Hardware Hardware Element M anagers

e—e Execution reference points == Other reference points =d= Main NFV reference points

Configuration and Management of Networks

NFV - MANO

 NFV Management And Orchestration (MANQO)

NFV Management and
Orchestration
Os-Ma ° .
— osSiBSS] | oo Virtualized Infrastructure
T | [T Manager (VIM)
Infrastructure
Lo | [oo][oo |] e | = i VNF management at VM
B VNF | VNF - VNF 5 Menoger€) Lo and container level
I I_Vn-Nf_I_ =T Vi-Vnfm ° P . d. -
NEVI roviding connectivity
e 1 = | [| between the various VNFs of
Computing Storage Network .
— a network service
| I Vlrtuallzaﬂon Layer I 1 ln\f/ri::tiljiz{eudre
Vi-Ha I Manager(s)
Hardware resources
Computing Storage Network
Hardware Hardware Hardware

e——e Execution reference points —j— Other reference points == Main NFV reference points

Interaction
| |
1 1
1 1
: ! SDN Application(s)
1 : (e.g., PCRF, EM etc)
: |
1 1
: : Applicatio
! ot Interface (ACI)
Ofchestration '
I Interface 1
NFV Orchestrator |41 | N SDN Controller
N/
(Management i |
Functions) ! :
1 1 Resource
: : Interface (RCI)
| |
| | SDN Resources
: : (Nework Resources e.g.,
: : virtual/physical switch or router, e-
| 1 switch, SDN switch ion NIC etc.)
1 1
1 1
NFV Domain : \ SDN Domain

n Control

Control

Configuration and Management of Networks

NFV & SDN

Possible SDN positioning

0SS5/8S5 NFV MANO
~—— Orchestralor
| R
y S
Servies, 'YNF &
VNF Infrastructure
~ Managars Descrption
Infrastructure SDN confroler
- \irtualzation Layer
Viruaized
Hardware Resources Infrastructure
Manager (s)

(i
B

Infrastructure SDN Controller : Provides the required
connectivity with the VNFs as managed by the VIM to support
the deployment and connectivity of VNFs.

Tenant SDN Controler: provides an overlay comprising tenant
VNFs that define the network service(s).

Configuration and Management of Networks

NFV & SDN

applications

SDON

Possible SDN positioning

SDN
control

er

Cpen VF between
SDN “VNF" and
SDN “VNF manager”

SDN-enabled
VNF

NFV management
\ \ \ and orchestration
L] e w
’ - Orchestrator
i — Sorvice, VNF, 5"\“"
T infrastructure description
|
; \ - Or-Vnfm
11 1 T
\ EMS 1 h EMS 2 EMS 3\
Ve-Vnim
* —~ -L —— —— L e VNF
: manager(s)
VNF 1 VNF 2 VNF 3
- : i : Or-Vi
NFVI ~ Vi-Vnim
Virtual irtual Virtual
computing torage network
V’,‘.uaizabon layer r Ni-Vi Virtualized
L | W / } infrastructure
[manager(s)
Computing Storage Network
hardware hardware hardware
L I
/ / \
IF 10 access Virtual networks SDN-enabled Open U/F to manage
connectivity created using SON switch/NE SDN-enabled
services infrastructure

Configuration and Management of Networks

The VNF placement and Service Function Chaining problems

Service Provider SP4

Service Provider SP1

—
Logical traffic direction
Infrastructure] . &
=l = = SELED N
Physical traffic direction
Service Provider SP2 Service Provider SP3

Service Request: Uy — VNF-A — VNF-B — VNF-E — VNF-G — U,

Configuration and Management of Networks

NFV & SDN

Example

Ll
NFV MANO
1
VNF Manager Or.—vnfm NFV Orchestrator

(VNFM) I (NFVO) Vi-vnfm -

Vi-Vnfm or-vi 1 orvi OrI'V‘
N l '

Virtualised WAN Virtualised
Infrastructure Infrastructure Infrastructure
Manager (VIM) Manager (WIM) Manager (VIM)

1
H —— Nf-Vi —— Nf-Vi — Nf-Vi i
L - - - - 1
Network Network Network
Controller (NC) Controller (NC) Controller (NC)

1 NFVI PoP 1

[o e

VNF Forwarding Graph

PNF
Endpoint 1

NFVI PoP 2

PNF
Endpoint
T2

