
Configuration and
Management of

Networks
Pedro Amaral

Configuration and Management of Networks

Evolution of Network functionality

22 CHAPTER 2 Why SDN?

Layer 2 Forwarding,
Routing, QoS, ACLs,

Control

Physical Physical

Layer 2 Forwarding

Routing, QoS, ACLs,
Control

Physical

Layer 2 Forwarding

Routing

QoS, ACLs, Control

Physical

Layer 2 Forwarding

Routing

Control

QoS, ACLs

Time

Hardware

Software

~1990 ~1995 ~2000 ~2005

FIGURE 2.1

Networking functionality migrating to hardware.

intelligence resident in every device. Whenever coordination between devices was required, collective
decisions could be made through the collaborative exchange of information between devices.

Interestingly, many of the goals of this distributed model, such as simplicity, ease of use, and automatic
recovery, are similar to the goals of SDN, but as the scale and complexity of networks grew, the current
distributed model has become increasingly dysfunctional.

Examples of this distributed intelligence are the layer two (bridging) and layer three (routing) pro-
tocols, which involved negotiation between the devices in order to reach a consensus on the way
forwarding and routing would be performed. We introduced these protocols in Chapter 1 and provide
more SDN-specific details on them here.

• Spanning Tree Protocol.
Basic layer two forwarding, also known as transparent bridging, can be performed independently
by each switch in the network. However, certain topologies require an imposition of a hierarchy on
the network in order to prevent loops, which would cause broadcast radiation. The Spanning Tree
Protocol (STP) is an example of the operation of autonomous devices participating in a distributed
decision-making process to create and enforce a hierarchy on the network. The result is the correct
operation of transparent bridging throughout the domain at the expense of convergence latency and
possibly arbitrary configuration. This solution was a tradeoff between cost and complexity. Multiple
paths could have been supported but at greater cost. STP was adequate when networks were of
smaller scale, but as networks grew the spanning tree solution became problematic. These problems
manifest themselves in a striking fashion when networks reach the scale of the modern data center.
For example, IEEE 802.1D specifies the following default timers for STP: 15 seconds for listening,
15 seconds for learning, and 20 seconds for max-age timeout. In older networks, convergence times
of 30–50 seconds were common. Such delays are not acceptable in today’s data centers. As the scale
of the layer two network grows, the likelihood of greater delays increases. The Rapid Spanning Tree

Software Moves into silicon

Forwarding in Hardware and Control in Software

Configuration and Management of Networks

Current Networks are expensive and complex:

Complexity and Vendor Lock in

Resistance to change difficulty to innovate

Expensive Hardware
Difficult to configure and operate (large
OPEX)

Most important : Networks are inadequate for some modern
applications

Ex: Cloud Datacenters

Configuration and Management of Networks

Data Center Network challenges

2.4 Data Center Innovation 31

there is a growing need for networks to not only recover from these types of events but also to be able
to respond quickly to frequent and immediate changes.

Although the tasks of creating a new network, moving a new network, and removing a network are
similar to those performed for servers and storage, doing so requires work orders, coordination between
server and networking administrators, physical or logical coordination of links, network interface cards
(NICs), and ToR switches, to name a few. Figure 2.4 illustrates the elapsed time in creating a new
instance of a VM, which is on the order of minutes, compared to the multiple days that it may take to

Physical Server A

Hypervisor A

VM
1

VM
2

VM
3

VM
4

Physical Server B

Hypervisor B

VM
1'

VM
2'

VM
3'

VM
4'

Create another instance of VM1 on Physical Server B: Elapsed time = MINUTES

Top of Rack Switch A Top of Rack Switch B

Network 1

Create another instance of Network 1 on Switch B downlinks, uplink,
Aggregation Switch C downlink, etc.: Elapsed time = DAYS

Aggregation Switch C

Network 1

FIGURE 2.4

Creating a new network instance in the old paradigm.

Configuration and Management of Networks

Data center Network needs:

• Automation
• Scalability (MAC table sizes and VLANs, broadcast

control problems)
• Multipathing
• Mutitenancy (virtual Networks)

2.5 Data Center Needs 33

Switch Switch

Switch Switch

Switch Switch

Shortest path

Alternate paths Redundant
paths

Shortest path: Speed and efficiency
Alternate and redundant paths: Resiliency, high availability and load balancing

FIGURE 2.5

Multipath.

forwarding loops. Because we are living with network technology invented years ago, the network is
forced into a hierarchy that results in links that could have provided shortest-path routes between nodes
lying entirely unused and dormant. In cases of failure, the current hierarchy can reconfigure itself in a
nondeterministic manner and with unacceptable latency. The speed and high-availability requirements
of the modern data center mandate that multiple paths not be wasted by being blocked and, instead, be
put into use to improve efficiency as well as to achieve resiliency and load balancing.

2.5.4 Multitenancy
With the advances in data center technology described above and the subsequent advent of cloud
computing, the idea of hosting dozens or even hundreds or thousands of customers, or tenants, in the
same physical data center has become a requirement. One set of physical hardware hosting multiple
tenants has been feasible for some time in the server and storage area. Multitenancy implies that the
data center has to provide each of its multiple tenants with its own (virtual) network that it can manage
in a manner similar to the way it would manage a physical network.

2.5.5 Network Virtualization
The urgency for automation, multitenancy, and multipathing has increased as a result of the scale and
fluidity introduced by server and storage virtualization. The general idea of virtualization is that you
create a higher-level abstraction that runs on top of the actual physical entity you are abstracting. The
growth of compute and storage server virtualization has created demand for network virtualization.
This means having a virtual abstraction of a network running on top of the actual physical network.
With virtualization, the network administrator should be able to create a network anytime and anywhere

Configuration and Management of Networks

Software Defined Networks – Control and data separation

Control Plane: Logic for controlling forwarding behavior.
 Examples: Routing protocols, network middlebox configuration.

Forwarding Plane: Forwarding traffic according to control plane
logic.
 Examples: IP forwarding, L2 switching, MPLS label switching.

Independent evolution and development: The
software control can evolve independently from
the hardware.

Control from high level software program :
Control behavior using high-order programs

Allows

Configuration and Management of Networks

Software Defined Networks – Control and data separation

FIGURE 4.1 SDN Architecture

4.1 SDN Data Plane

 The SDN data plane, referred to as the resource layer in ITU-T Y.3300 and also
often referred to as the infrastructure layer, is where network forwarding devices
perform the transport and processing of data according to decisions made by the
SDN control plane. The important characteristic of the network devices in an
SDN network is that these devices perform a simple forwarding function,
without embedded software to make autonomous decisions.

Configuration and Management of Networks

Software Defined Networks – Control and data separation
62 CHAPTER 4 How SDN Works

Controller

Data
Forwarding

flows
Data

Forwarding

flows

Data
Forwarding

flows
Data

Forwarding

flows

Data
Forwarding

flows

Data

Forwarding

Data

Forwarding

Data

Forwarding

Data

Forwarding

Data

Forwarding

App App App App

Southbound API

Northbound API

SDN
Devices

High-Performance
Machine

Global Network View

FIGURE 4.1

SDN operation overview.

pairs, VLAN endpoints, layer three tunnel endpoints, and input ports, among other things. One set of
rules describes the forwarding actions that the device should take for all packets belonging to that flow.
A flow is unidirectional in that packets flowing between the same two endpoints in the opposite direction
could each constitute a separate flow. Flows are represented on a device as a flow entry.

A flow table resides on the network device and consists of a series of flow entries and the actions
to perform when a packet matching that flow arrives at the device. When the SDN device receives a
packet, it consults its flow tables in search of a match. These flow tables had been constructed previously
when the controller downloaded appropriate flow rules to the device. If the SDN device finds a match,
it takes the appropriate configured action, which usually entails forwarding the packet. If it does not
find a match, the switch can either drop the packet or pass it to the controller, depending on the version
of OpenFlow and the configuration of the switch. We describe flow tables and this packet-matching
process in greater detail in Sections 4.3 and 5.3.

The definition of a flow is a relatively simple programming expression of what may be a very complex
control plane calculation previously performed by the controller. For the reader who is less familiar with
traditional switching hardware architecture, it is important to understand that this complexity is such that
it simply cannot be performed at line rates and instead must be digested by the control plane and reduced
to simple rules that can be processed at that speed. In Open SDN, this digested form is the flow entry.

The SDN controller is responsible for abstracting the network of SDN devices it controls and pre-
senting an abstraction of these network resources to the SDN applications running above. The controller
allows the SDN application to define flows on devices and to help the application respond to packets that
are forwarded to the controller by the SDN devices. In Figure 4.1 we see on the right side of the controller
that it maintains a view of the entire network that it controls. This permits it to calculate optimal forward-
ing solutions for the network in a deterministic, predictable manner. Since one controller can control
a large number of network devices, these calculations are normally performed on a high-performance

Configuration and Management of Networks

Software Defined Networks – OpenFlow Southbound API

4.2 SDN Operation 63

machine with an order-of-magnitude performance advantage over the CPU and memory capacity than is
typically afforded to the network devices themselves. For example, a controller might be implemented
on an eight-core, 2-GHz CPU versus the single-core, 1-GHz CPU that is more typical on a switch.

SDN applications are built on top of the controller. These applications should not be confused with the
application layer defined in the seven-layer OSI model of computer networking. Since SDN applications
are really part of network layers two and three, this concept is orthogonal to that of applications in the
tight hierarchy of OSI protocol layers. The SDN application interfaces with the controller, using it to
set proactive flows on the devices and to receive packets that have been forwarded to the controller.
Proactive flows are established by the application; typically the application will set these flows when the
application starts up, and the flows will persist until some configuration change is made. This kind of
proactive flow is known as a static flow. Another kind of proactive flow is where the controller decides
to modify a flow based on the traffic load currently being driven through a network device.

In addition to flows defined proactively by the application, some flows are defined in response to a
packet forwarded to the controller. Upon receipt of incoming packets that have been forwarded to the
controller, the SDN application will instruct the controller as to how to respond to the packet and, if
appropriate, will establish new flows on the device in order to allow that device to respond locally the
next time it sees a packet belonging to that flow. Such flows are called reactive flows. In this way, it
is now possible to write software applications that implement forwarding, routing, overlay, multipath,
and access control functions, among others.

There are also reactive flows that are defined or modified as a result of stimuli from sources other
than packets from the controller. For example, the controller can insert flows reactively in response to
other data sources such as intrusion detection systems (IDS) or the NetFlow traffic analyzer [16].

Figure 4.2 depicts the OpenFlow protocol as the means of communication between the controller
and the device. Though OpenFlow is the defined standard for such communication in Open SDN, there

Controller

Data
Forwarding

flows
Data

Forwarding

flows

Data
Forwarding

flows
Data

Forwarding

flows

Data
Forwarding

flows

OpenFlow

Data

Forwarding

Data

Forwarding

Data

Forwarding

Data

Forwarding

Data

Forwarding

FIGURE 4.2

Controller-to-device communication.

Configuration and Management of Networks

Software Defined Networks – Controller

4.4 SDN Controller 69

the applications that make use of that controller. Controllers often come with their own set of common
application modules, such as a learning switch, a router, a basic firewall, and a simple load balancer.
These are really SDN applications, but they are often bundled with the controller. Here we focus strictly
on the controller.

Figure 4.5 exposes the anatomy of an SDN controller. The figure depicts the modules that provide the
controller’s core functionality, both a northbound and a southbound API, and a few sample applications
that might use the controller. As we described earlier, the southbound API is used to interface with
the SDN devices. This API is OpenFlow in the case of Open SDN or some proprietary alternative in
other SDN solutions. It is worth noting that in some product offerings, both OpenFlow and alternatives
coexist on the same controller. Early work on the southbound API has resulted in more maturity of
that interface with respect to its definition and standardization. OpenFlow itself is the best example of
this maturity, but de facto standards such as the Cisco CLI and SNMP also represent standardization in
the southbound-facing interface. OpenFlow’s companion protocol, OF-Config [17], and Nicira’s Open
vSwitch Database Management Protocol (OVSDB) [18] are both open protocols for the southbound
interface, though these are limited to configuration roles.

Unfortunately, there is currently no northbound counterpart to the southbound OpenFlow standard
or even the de facto legacy standards. This lack of a standard for the controller-to-application interface
is considered a current deficiency in SDN, and some bodies are developing proposals to standardize it.
The absence of a standard notwithstanding, northbound interfaces have been implemented in a number of
disparate forms. For example, the Floodlight controller [2] includes a Java API and a Representational
State Transfer (RESTful) [13] API. The OpenDaylight controller [14] provides a RESTful API for
applications running on separate machines. The northbound API represents an outstanding opportunity
for innovation and collaboration among vendors and the open source community.

Southbound
API

Modules

Flow TableOpenFlow

Device
Mgr

Disco &
Topo Stats

Topo

Northbound
API REST

API
Python

API
Java
API

Flows

RouterLearning
SwitchGUI Others

FIGURE 4.5

SDN controller anatomy.

4.4 SDN Controller 71

Application

Events Methods

Northbound
API

REST
API

Python
API

Java
API

Controller

Other Context
Netflow IDS BGP

FIGURE 4.6

SDN controller northbound API.

4.4.3 Existing SDN Controller Implementations
There are a number of implementations of SDN controllers available on the market today. They include
both open source SDN controllers and commercial SDN controllers. Open source SDN controllers come
in many forms, from basic C-language controllers such as NOX [7] to Java-based versions such as Beacon
[1] and Floodlight [2]. There is even a Ruby-based [8] controller called Trema [9]. Interfaces to these
controllers may be offered in the language in which the controller is written or other alternatives, such
as REST or Python. An open source controller called OpenDaylight [3] has been built by a consortium
of vendors. Other vendors offer their own commercial versions of an SDN controller. Vendors such as
NEC, IBM, and HP offer controllers that are primarily OpenFlow implementations. Most other NEMs
offer vendor-specific and proprietary SDN controllers that include some level of OpenFlow support.

There are pros and cons to the proprietary alternative controllers. Although proprietary controllers are
more closed than the nominally open systems, they do offer some of the automation and programmability
advantages of SDN while providing a buck stops here level of support for the network equipment. They
permit SDN-like operation of legacy switches, obviating the need to replace older switching equipment
in order to begin the migration to SDN. They do constitute closed systems, however, which ostensibly
violates one of the original tenets of SDN. They also may do little to offload control functionality from
devices, resulting in the continued high cost of network devices. These proprietary alternative controllers
are generally a component of the alternative SDN methodologies we introduce in Section 4.6.

4.4.4 Potential Issues with the SDN Controller
In general, the Open SDN controller suffers from the birthing pains common to any new technology.
Although many important problems are addressed by the concept and architecture of the controller,
there have been comparatively few large-scale commercial deployments thus far. As more commercial
deployments scale, more real-life experience in large, demanding networks will be needed. In particular,

Configuration and Management of Networks

Software Defined Networks – OpenFlow Southbound API

50 CHAPTER 3 The Genesis of SDN

In short, Ethane is basically a Software Defined Networking technology, and its components are the
antecedents of OpenFlow, which we describe in detail in Chapter 5.

3.3 Software Defined Networking is Born
3.3.1 The Birth of OpenFlow
Just as the previous sections presented standards and proposals that were precursors to SDN, seeing
SDN through a gestation period, the arrival of OpenFlow is the point at which SDN was actually born.
In reality, the term SDN did not come into use until a year after OpenFlow made its appearance on the
scene in 2008, but the existence and adoption of OpenFlow by research communities and networking
vendors marked a sea change in networking, one that we are still witnessing even now. Indeed, though
the term SDN was in use in the research community as early as 2009, SDN did not begin to make a big
impact in the broader networking industry until 2011.

For reasons identified in the previous chapter, OpenFlow was developed and designed to allow
researchers to experiment and innovate with new protocols in everyday networks. The OpenFlow speci-
fication encouraged vendors to implement and enable OpenFlow in their switching products for deploy-
ment in college campus networks. Many network vendors have implemented OpenFlow in their products.

The OpenFlow specification delineates both the protocol to be used between the controller and the
switch as well as the behavior expected of the switch. Figure 3.7 illustrates the simple architecture of
an OpenFlow solution.

OpenFlow Switch OpenFlow Switch OpenFlow Switch

OpenFlow Controller

OpenFlow OpenFlow OpenFlow

Flow Tables Flow Tables Flow Tables

Forwarding Plane Forwarding Plane Forwarding Plane

FIGURE 3.7

General OpenFlow design.

Configuration and Management of Networks

Software Defined Networks – OpenFlow Forwarding Plane

Flow Tables: Perform packet lookup.
• All packets compared to flow table for match

• Instructions depending on match being found

• Packets that do not match are either sent to the controller (OF 1.0)

or discarded (OF 1.3 and after)

Secure Channel: Communication to the controller (TCP connection or
TLS connection).

Configuration and Management of Networks

Software Defined Networks – OpenFlow Forwarding Plane
84 CHAPTER 5 The OpenFlow Specification

...
...

...

OpenFlow Controller

Secure Channel

Port 1 Port 4 Port K Port NPort 3Port 2

Local In

Local Out

Drop
Pkt

A

C

B

Pkt InY Pkt Out

Packet-
Matching
Function

OpenFlow Protocol

X

Action

Y Pkt Out

FIGURE 5.2

OpenFlow V.1.0 switch.

in the example. In the leftmost path Y case, the controller indicates that it wants to defer the forwarding
decision to the packet-matching logic. Section 5.3.4 demonstrates that the controller dictates this by
stipulating the virtual port TABLE as the output port.

A given OpenFlow switch implementation is either OpenFlow-only or OpenFlow-hybrid. An
OpenFlow-only switch is one that forwards packets only according to the OpenFlow logic described
above. An OpenFlow hybrid is a switch that can also switch packets in its legacy mode as an Ethernet
switch or IP router. One can view the hybrid case as an OpenFlow switch residing next to a completely
independent traditional switch. Such a hybrid switch requires a preprocessing classification mechanism
that directs packets to either OpenFlow processing or the traditional packet processing. It is probable
that hybrid switches will be the norm during the migration to pure OpenFlow implementations.

Note that we use the term OpenFlow switch in this chapter instead of the term OpenFlow device
we customarily use. This is because switch is the term used in the OpenFlow specification. In general,
though, we opt to use the term device, since there are already nonswitch devices being controlled by
OpenFlow controllers, such as wireless access points.

5.2.2 The OpenFlow Controller
Modern Internet switches make millions of decisions per second about whether or not to forward an
incoming packet, to what set of output ports it should be forwarded, and what header fields in the packet

5.2 OpenFlow Overview 83

complicated. The OpenFlow designers realized a number of years ago that many switches were really
built around ASICs controlled by rules encoded in tables that could be programmed. Over time, fewer
homegrown versions of these switching chips were being developed, and there was greater consolidation
in the semiconductor industry. More manufacturers’ switches were based on ever-consolidating switch-
ing architecture and programmability, with ever-increasing use of programmable switching chips from
a relatively small number of merchant silicon vendors. OpenFlow is an attempt to allow the program-
ming, in a generic way, of the various implementations of switches that conform to this new paradigm.
OpenFlow attempts to exploit the table-driven design extant in many of the current silicon solutions.
As the number of silicon vendors consolidates, there should be a greater possibility for alignment with
future OpenFlow versions.

It is worth pausing here to remark on the fact that we are talking a lot about ASICs for a technology
called Software Defined Networking. Yet hardware must be part of the discussion, since it is necessary
to use this specialized silicon in order to switch packets at high line rates. We explained in Chapter 4
that though pure software SDN implementations exist, they cannot switch packets at sufficiently high
rates to keep up with high-speed interfaces. What is really meant by the word software in the name
SDN, then, is that the SDN devices are fully programmable, not that everything is done using software
running on a traditional CPU.

The sections that follow introduce the formal terminology used by OpenFlow and provide basic
background that will allow us to explore the details of the different versions of the OpenFlow specification
that have been released up to the time of the writing of this book.

5.2.1 The OpenFlow Switch
Figure 5.2 depicts the basic functions of an OpenFlow V.1.0 switch and its relationship to a controller.
As would be expected in a packet switch, we see that the core function is to take packets that arrive
on one port (path X on port 2 in the figure) and forward it through another port (port N in the figure),
making any necessary packet modifications along the way. A unique aspect of the OpenFlow switch is
embodied in the packet-matching function shown in Figure 5.2. The adjacent table is a flow table, and
we give separate treatment to this in Section 5.3.2. The wide, gray, double arrow in Figure 5.2 starts
in the decision logic, shows a match with a particular entry in that table, and directs the now-matched
packet to an action box on the right. This action box has three fundamental options for the disposition
of this arriving packet:

• A. Forward the packet out a local port, possibly modifying certain header fields first.
• B. Drop the packet.
• C. Pass the packet to the controller.

These three fundamental packet paths are illustrated in Figure 5.2. In the case of path C , the packet
is passed to the controller over the secure channel shown in the figure. If the controller has either a
control message or a data packet to give to the switch, the controller uses this same secure channel
in the reverse direction. When the controller has a data packet to forward out through the switch, it
uses the OpenFlow PACKET_OUT message. We see in Figure 5.2 that such a data packet coming
from the controller may take two different paths through the OpenFlow logic, both denoted Y . In the
rightmost case, the controller directly specifies the output port and the packet is passed to that port N

Configuration and Management of Networks

Software Defined Networks – Packet Matching

FIGURE 4.5 OpenFlow Table Entry Formats

 Match fields: Used to select packets that match the values in the fields.
 Priority: Relative priority of table entries. This is a 16-bit field with 0

corresponding to the lowest priority. In principle, there could be 216 = 64k
priority levels.

 Counters: Updated for matching packets. The OpenFlow specification
defines a variety of counters. Table 4.1 lists the counters that must be
supported by an OpenFlow switch.

TABLE 4.1 Required OpenFlow Counters

 Instructions: Instructions to be performed if a match occurs.

FIGURE 4.5 OpenFlow Table Entry Formats

 Match fields: Used to select packets that match the values in the fields.
 Priority: Relative priority of table entries. This is a 16-bit field with 0

corresponding to the lowest priority. In principle, there could be 216 = 64k
priority levels.

 Counters: Updated for matching packets. The OpenFlow specification
defines a variety of counters. Table 4.1 lists the counters that must be
supported by an OpenFlow switch.

TABLE 4.1 Required OpenFlow Counters

 Instructions: Instructions to be performed if a match occurs.

Configuration and Management of Networks

Software Defined Networks – Packet Matching

FIGURE 4.5 OpenFlow Table Entry Formats

 Match fields: Used to select packets that match the values in the fields.
 Priority: Relative priority of table entries. This is a 16-bit field with 0

corresponding to the lowest priority. In principle, there could be 216 = 64k
priority levels.

 Counters: Updated for matching packets. The OpenFlow specification
defines a variety of counters. Table 4.1 lists the counters that must be
supported by an OpenFlow switch.

TABLE 4.1 Required OpenFlow Counters

 Instructions: Instructions to be performed if a match occurs.

FIGURE 4.5 OpenFlow Table Entry Formats

 Match fields: Used to select packets that match the values in the fields.
 Priority: Relative priority of table entries. This is a 16-bit field with 0

corresponding to the lowest priority. In principle, there could be 216 = 64k
priority levels.

 Counters: Updated for matching packets. The OpenFlow specification
defines a variety of counters. Table 4.1 lists the counters that must be
supported by an OpenFlow switch.

TABLE 4.1 Required OpenFlow Counters

 Instructions: Instructions to be performed if a match occurs.

FIGURE 4.5 OpenFlow Table Entry Formats

 Match fields: Used to select packets that match the values in the fields.
 Priority: Relative priority of table entries. This is a 16-bit field with 0

corresponding to the lowest priority. In principle, there could be 216 = 64k
priority levels.

 Counters: Updated for matching packets. The OpenFlow specification
defines a variety of counters. Table 4.1 lists the counters that must be
supported by an OpenFlow switch.

TABLE 4.1 Required OpenFlow Counters

 Instructions: Instructions to be performed if a match occurs.

FIGURE 4.5 OpenFlow Table Entry Formats

 Match fields: Used to select packets that match the values in the fields.
 Priority: Relative priority of table entries. This is a 16-bit field with 0

corresponding to the lowest priority. In principle, there could be 216 = 64k
priority levels.

 Counters: Updated for matching packets. The OpenFlow specification
defines a variety of counters. Table 4.1 lists the counters that must be
supported by an OpenFlow switch.

TABLE 4.1 Required OpenFlow Counters

 Instructions: Instructions to be performed if a match occurs.
 Timeouts: Maximum amount of idle time before a flow is expired by the

switch. Each flow entry has an idle_timeout and a hard_timeout
associated with it. A nonzero hard_timeout field causes the flow entry to
be removed after the given number of seconds, regardless of how many
packets it has matched. A nonzero idle_timeout field causes the flow entry
to be removed when it has matched no packets in the given number of
seconds.

 Cookie: 64-bit opaque data value chosen by the controller. May be used
by the controller to filter flow statistics, flow modification and flow
deletion; not used when processing packets.

 Flags: Flags alter the way flow entries are managed; for example, the flag
OFPFF_SEND_FLOW_REM triggers flow removed messages for that
flow entry.

Match Fields Component

 The match fields component of a table entry consists of the following required
fields (see part b of Figure 4.5):
 Ingress port: The identifier of the port on this switch on which the packet

arrived. This may be a physical port or a switch-defined virtual port.
Required in ingress tables.

 Egress port: The identifier of the egress port from action set. Required in
egress tables.

 Ethernet source and destination addresses: Each entry can be an exact
address, a bitmasked value for which only some of the address bits are
checked, or a wildcard value (match any value).

 Ethernet type field: Indicates type of the Ethernet packet payload.
 IP: Version 4 or 6.
 IPv4 or IPv6 source address, and destination address: Each entry can

be an exact address, a bitmasked value, a subnet mask value, or a wildcard
value.

 TCP source and destination ports: Exact match or wildcard value.
 UDP source and destination ports: Exact match or wildcard value.

Configuration and Management of Networks

Software Defined Networks – Packet Matching

FIGURE 4.5 OpenFlow Table Entry Formats

 Match fields: Used to select packets that match the values in the fields.
 Priority: Relative priority of table entries. This is a 16-bit field with 0

corresponding to the lowest priority. In principle, there could be 216 = 64k
priority levels.

 Counters: Updated for matching packets. The OpenFlow specification
defines a variety of counters. Table 4.1 lists the counters that must be
supported by an OpenFlow switch.

TABLE 4.1 Required OpenFlow Counters

 Instructions: Instructions to be performed if a match occurs.

 Timeouts: Maximum amount of idle time before a flow is expired by the
switch. Each flow entry has an idle_timeout and a hard_timeout
associated with it. A nonzero hard_timeout field causes the flow entry to
be removed after the given number of seconds, regardless of how many
packets it has matched. A nonzero idle_timeout field causes the flow entry
to be removed when it has matched no packets in the given number of
seconds.

 Cookie: 64-bit opaque data value chosen by the controller. May be used
by the controller to filter flow statistics, flow modification and flow
deletion; not used when processing packets.

 Flags: Flags alter the way flow entries are managed; for example, the flag
OFPFF_SEND_FLOW_REM triggers flow removed messages for that
flow entry.

Match Fields Component

 The match fields component of a table entry consists of the following required
fields (see part b of Figure 4.5):
 Ingress port: The identifier of the port on this switch on which the packet

arrived. This may be a physical port or a switch-defined virtual port.
Required in ingress tables.

 Egress port: The identifier of the egress port from action set. Required in
egress tables.

 Ethernet source and destination addresses: Each entry can be an exact
address, a bitmasked value for which only some of the address bits are
checked, or a wildcard value (match any value).

 Ethernet type field: Indicates type of the Ethernet packet payload.
 IP: Version 4 or 6.
 IPv4 or IPv6 source address, and destination address: Each entry can

be an exact address, a bitmasked value, a subnet mask value, or a wildcard
value.

 TCP source and destination ports: Exact match or wildcard value.
 UDP source and destination ports: Exact match or wildcard value.

Configuration and Management of Networks

Software Defined Networks – Instructions

Instructions: Can be grouped in four categories:

Label Switching (MPLS) packet.
 Set-Field: The various Set-Field actions are identified by their field type

and modify the values of respective header fields in the packet.
 Change-TTL: The various Change-TTL actions modify the values of the

IPv4 TTL (time to live), IPv6 hop limit, or MPLS TTL in the packet.
 Drop: There is no explicit action to represent drops. Instead, packets

whose action sets have no output action should be dropped.
 An action set is a list of actions associated with a packet that are accumulated
while the packet is processed by each table and that are executed when the
packet exits the processing pipeline.
 The types of instructions can be grouped into four categories:
 Direct packet through pipeline: The Goto-Table instruction directs the

packet to a table farther along in the pipeline. The Meter instruction
directs the packet to a specified meter.

 Perform action on packet: Actions may be performed on the packet
when it is matched to a table entry. The Apply-Actions instruction applies
the specified actions immediately, without any change to the action set
associated with this packet. This instruction may be used to modify the
packet between two tables in the pipeline.

 Update action set: The Write-Actions instruction merges specified
actions into the current action set for this packet. The Clear-Actions
instruction clears all the actions in the action set.

 Update metadata: A metadata value can be associated with a packet. It is
used to carry information from one table to the next. The Write-Metadata
instruction updates an existing metadata value or creates a new value.

Flow Table Pipeline

 A switch includes one or more flow tables. If there is more than one flow table,
they are organized as a pipeline, with the tables labeled with increasing numbers
starting with zero. The use of multiple tables in a pipeline, rather than a single
flow table, provides the SDN controller with considerable flexibility.
 The OpenFlow specification defines two stages of processing:

Label Switching (MPLS) packet.
 Set-Field: The various Set-Field actions are identified by their field type

and modify the values of respective header fields in the packet.
 Change-TTL: The various Change-TTL actions modify the values of the

IPv4 TTL (time to live), IPv6 hop limit, or MPLS TTL in the packet.
 Drop: There is no explicit action to represent drops. Instead, packets

whose action sets have no output action should be dropped.
 An action set is a list of actions associated with a packet that are accumulated
while the packet is processed by each table and that are executed when the
packet exits the processing pipeline.
 The types of instructions can be grouped into four categories:
 Direct packet through pipeline: The Goto-Table instruction directs the

packet to a table farther along in the pipeline. The Meter instruction
directs the packet to a specified meter.

 Perform action on packet: Actions may be performed on the packet
when it is matched to a table entry. The Apply-Actions instruction applies
the specified actions immediately, without any change to the action set
associated with this packet. This instruction may be used to modify the
packet between two tables in the pipeline.

 Update action set: The Write-Actions instruction merges specified
actions into the current action set for this packet. The Clear-Actions
instruction clears all the actions in the action set.

 Update metadata: A metadata value can be associated with a packet. It is
used to carry information from one table to the next. The Write-Metadata
instruction updates an existing metadata value or creates a new value.

Flow Table Pipeline

 A switch includes one or more flow tables. If there is more than one flow table,
they are organized as a pipeline, with the tables labeled with increasing numbers
starting with zero. The use of multiple tables in a pipeline, rather than a single
flow table, provides the SDN controller with considerable flexibility.
 The OpenFlow specification defines two stages of processing:

Label Switching (MPLS) packet.
 Set-Field: The various Set-Field actions are identified by their field type

and modify the values of respective header fields in the packet.
 Change-TTL: The various Change-TTL actions modify the values of the

IPv4 TTL (time to live), IPv6 hop limit, or MPLS TTL in the packet.
 Drop: There is no explicit action to represent drops. Instead, packets

whose action sets have no output action should be dropped.
 An action set is a list of actions associated with a packet that are accumulated
while the packet is processed by each table and that are executed when the
packet exits the processing pipeline.
 The types of instructions can be grouped into four categories:
 Direct packet through pipeline: The Goto-Table instruction directs the

packet to a table farther along in the pipeline. The Meter instruction
directs the packet to a specified meter.

 Perform action on packet: Actions may be performed on the packet
when it is matched to a table entry. The Apply-Actions instruction applies
the specified actions immediately, without any change to the action set
associated with this packet. This instruction may be used to modify the
packet between two tables in the pipeline.

 Update action set: The Write-Actions instruction merges specified
actions into the current action set for this packet. The Clear-Actions
instruction clears all the actions in the action set.

 Update metadata: A metadata value can be associated with a packet. It is
used to carry information from one table to the next. The Write-Metadata
instruction updates an existing metadata value or creates a new value.

Flow Table Pipeline

 A switch includes one or more flow tables. If there is more than one flow table,
they are organized as a pipeline, with the tables labeled with increasing numbers
starting with zero. The use of multiple tables in a pipeline, rather than a single
flow table, provides the SDN controller with considerable flexibility.
 The OpenFlow specification defines two stages of processing:

Label Switching (MPLS) packet.
 Set-Field: The various Set-Field actions are identified by their field type

and modify the values of respective header fields in the packet.
 Change-TTL: The various Change-TTL actions modify the values of the

IPv4 TTL (time to live), IPv6 hop limit, or MPLS TTL in the packet.
 Drop: There is no explicit action to represent drops. Instead, packets

whose action sets have no output action should be dropped.
 An action set is a list of actions associated with a packet that are accumulated
while the packet is processed by each table and that are executed when the
packet exits the processing pipeline.
 The types of instructions can be grouped into four categories:
 Direct packet through pipeline: The Goto-Table instruction directs the

packet to a table farther along in the pipeline. The Meter instruction
directs the packet to a specified meter.

 Perform action on packet: Actions may be performed on the packet
when it is matched to a table entry. The Apply-Actions instruction applies
the specified actions immediately, without any change to the action set
associated with this packet. This instruction may be used to modify the
packet between two tables in the pipeline.

 Update action set: The Write-Actions instruction merges specified
actions into the current action set for this packet. The Clear-Actions
instruction clears all the actions in the action set.

 Update metadata: A metadata value can be associated with a packet. It is
used to carry information from one table to the next. The Write-Metadata
instruction updates an existing metadata value or creates a new value.

Flow Table Pipeline

 A switch includes one or more flow tables. If there is more than one flow table,
they are organized as a pipeline, with the tables labeled with increasing numbers
starting with zero. The use of multiple tables in a pipeline, rather than a single
flow table, provides the SDN controller with considerable flexibility.
 The OpenFlow specification defines two stages of processing:

Label Switching (MPLS) packet.
 Set-Field: The various Set-Field actions are identified by their field type

and modify the values of respective header fields in the packet.
 Change-TTL: The various Change-TTL actions modify the values of the

IPv4 TTL (time to live), IPv6 hop limit, or MPLS TTL in the packet.
 Drop: There is no explicit action to represent drops. Instead, packets

whose action sets have no output action should be dropped.
 An action set is a list of actions associated with a packet that are accumulated
while the packet is processed by each table and that are executed when the
packet exits the processing pipeline.
 The types of instructions can be grouped into four categories:
 Direct packet through pipeline: The Goto-Table instruction directs the

packet to a table farther along in the pipeline. The Meter instruction
directs the packet to a specified meter.

 Perform action on packet: Actions may be performed on the packet
when it is matched to a table entry. The Apply-Actions instruction applies
the specified actions immediately, without any change to the action set
associated with this packet. This instruction may be used to modify the
packet between two tables in the pipeline.

 Update action set: The Write-Actions instruction merges specified
actions into the current action set for this packet. The Clear-Actions
instruction clears all the actions in the action set.

 Update metadata: A metadata value can be associated with a packet. It is
used to carry information from one table to the next. The Write-Metadata
instruction updates an existing metadata value or creates a new value.

Flow Table Pipeline

 A switch includes one or more flow tables. If there is more than one flow table,
they are organized as a pipeline, with the tables labeled with increasing numbers
starting with zero. The use of multiple tables in a pipeline, rather than a single
flow table, provides the SDN controller with considerable flexibility.
 The OpenFlow specification defines two stages of processing:

Label Switching (MPLS) packet.
 Set-Field: The various Set-Field actions are identified by their field type

and modify the values of respective header fields in the packet.
 Change-TTL: The various Change-TTL actions modify the values of the

IPv4 TTL (time to live), IPv6 hop limit, or MPLS TTL in the packet.
 Drop: There is no explicit action to represent drops. Instead, packets

whose action sets have no output action should be dropped.
 An action set is a list of actions associated with a packet that are accumulated
while the packet is processed by each table and that are executed when the
packet exits the processing pipeline.
 The types of instructions can be grouped into four categories:
 Direct packet through pipeline: The Goto-Table instruction directs the

packet to a table farther along in the pipeline. The Meter instruction
directs the packet to a specified meter.

 Perform action on packet: Actions may be performed on the packet
when it is matched to a table entry. The Apply-Actions instruction applies
the specified actions immediately, without any change to the action set
associated with this packet. This instruction may be used to modify the
packet between two tables in the pipeline.

 Update action set: The Write-Actions instruction merges specified
actions into the current action set for this packet. The Clear-Actions
instruction clears all the actions in the action set.

 Update metadata: A metadata value can be associated with a packet. It is
used to carry information from one table to the next. The Write-Metadata
instruction updates an existing metadata value or creates a new value.

Flow Table Pipeline

 A switch includes one or more flow tables. If there is more than one flow table,
they are organized as a pipeline, with the tables labeled with increasing numbers
starting with zero. The use of multiple tables in a pipeline, rather than a single
flow table, provides the SDN controller with considerable flexibility.
 The OpenFlow specification defines two stages of processing:

Configuration and Management of Networks

Software Defined Networks – Instructions
Types of actions:

 Thus, OpenFlow can be used with network traffic involving a variety of
protocols and network services. Note that at the MAC/link layer, only Ethernet is
supported. Therefore, OpenFlow as currently defined cannot control Layer 2
traffic over wireless networks.
 Each of the fields in the match fields component either has a specific value or a
wildcard value, which matches any value in the corresponding packet header
field. A flow table may include a table-miss flow entry, which wildcards all
match fields (every field is a match regardless of value) and has the lowest
priority.
 We can now offer a more precise definition of the term flow. From the point of
view of an individual switch, a flow is a sequence of packets that matches a
specific entry in a flow table. The definition is packet oriented, in the sense that
it is a function of the values of header fields of the packets that constitute the
flow, and not a function of the path they follow through the network. A
combination of flow entries on multiple switches defines a flow that is bound to
a specific path.

Instructions Component

 The instructions component of a table entry consists of a set of instructions that
are executed if the packet matches the entry. Before describing the types of
instructions, we need to define the terms action and action set. Actions describe
packet forwarding, packet modification, and group table processing operations.
The OpenFlow specification includes the following actions:
 Output: Forward packet to specified port. The port could be an output

port to another switch or the port to the controller. In the latter case, the
packet is encapsulated in a message to the controller.

 Set-Queue: Sets the queue ID for a packet. When the packet is forwarded
to a port using the output action, the queue ID determines which queue
attached to this port is used for scheduling and forwarding the packet.
Forwarding behavior is dictated by the configuration of the queue and is
used to provide basic QoS support. SDN support for QoS is discussed in
Chapter 10.

 Group: Process packet through specified group.
 Push-Tag/Pop-Tag: Push or pop a tag field for a VLAN or Multiprotocol

 Thus, OpenFlow can be used with network traffic involving a variety of
protocols and network services. Note that at the MAC/link layer, only Ethernet is
supported. Therefore, OpenFlow as currently defined cannot control Layer 2
traffic over wireless networks.
 Each of the fields in the match fields component either has a specific value or a
wildcard value, which matches any value in the corresponding packet header
field. A flow table may include a table-miss flow entry, which wildcards all
match fields (every field is a match regardless of value) and has the lowest
priority.
 We can now offer a more precise definition of the term flow. From the point of
view of an individual switch, a flow is a sequence of packets that matches a
specific entry in a flow table. The definition is packet oriented, in the sense that
it is a function of the values of header fields of the packets that constitute the
flow, and not a function of the path they follow through the network. A
combination of flow entries on multiple switches defines a flow that is bound to
a specific path.

Instructions Component

 The instructions component of a table entry consists of a set of instructions that
are executed if the packet matches the entry. Before describing the types of
instructions, we need to define the terms action and action set. Actions describe
packet forwarding, packet modification, and group table processing operations.
The OpenFlow specification includes the following actions:
 Output: Forward packet to specified port. The port could be an output

port to another switch or the port to the controller. In the latter case, the
packet is encapsulated in a message to the controller.

 Set-Queue: Sets the queue ID for a packet. When the packet is forwarded
to a port using the output action, the queue ID determines which queue
attached to this port is used for scheduling and forwarding the packet.
Forwarding behavior is dictated by the configuration of the queue and is
used to provide basic QoS support. SDN support for QoS is discussed in
Chapter 10.

 Group: Process packet through specified group.
 Push-Tag/Pop-Tag: Push or pop a tag field for a VLAN or MultiprotocolLabel Switching (MPLS) packet.
 Set-Field: The various Set-Field actions are identified by their field type

and modify the values of respective header fields in the packet.
 Change-TTL: The various Change-TTL actions modify the values of the

IPv4 TTL (time to live), IPv6 hop limit, or MPLS TTL in the packet.
 Drop: There is no explicit action to represent drops. Instead, packets

whose action sets have no output action should be dropped.
 An action set is a list of actions associated with a packet that are accumulated
while the packet is processed by each table and that are executed when the
packet exits the processing pipeline.
 The types of instructions can be grouped into four categories:
 Direct packet through pipeline: The Goto-Table instruction directs the

packet to a table farther along in the pipeline. The Meter instruction
directs the packet to a specified meter.

 Perform action on packet: Actions may be performed on the packet
when it is matched to a table entry. The Apply-Actions instruction applies
the specified actions immediately, without any change to the action set
associated with this packet. This instruction may be used to modify the
packet between two tables in the pipeline.

 Update action set: The Write-Actions instruction merges specified
actions into the current action set for this packet. The Clear-Actions
instruction clears all the actions in the action set.

 Update metadata: A metadata value can be associated with a packet. It is
used to carry information from one table to the next. The Write-Metadata
instruction updates an existing metadata value or creates a new value.

Flow Table Pipeline

 A switch includes one or more flow tables. If there is more than one flow table,
they are organized as a pipeline, with the tables labeled with increasing numbers
starting with zero. The use of multiple tables in a pipeline, rather than a single
flow table, provides the SDN controller with considerable flexibility.
 The OpenFlow specification defines two stages of processing:

Configuration and Management of Networks

Software Defined Networks –Switch operation

FIGURE 4.6 Simplified Flowchart Detailing Packet Flow Through an

FIGURE 4.6 Simplified Flowchart Detailing Packet Flow Through an

Configuration and Management of Networks

Software Defined Networks – Group Table

Group tables and group actions enable OpenFlow to represent a set of
ports as a single entity for forwarding packets.

Group Tables are filled with Group Entries:

Group Table

 In the course of pipeline processing, a flow table may direct a flow of packets to
the group table rather than another flow table. The group table and group actions
enable OpenFlow to represent a set of ports as a single entity for forwarding
packets. Different types of groups are provided to represent different forwarding
abstractions, such as multicasting and broadcasting.
 Each group table consists of a number of rows, called group entries, consisting
of four components (refer back to part c of Figure 4.5):
 Group identifier: A 32-bit unsigned integer uniquely identifying the

group. A group is defined as an entry in the group table.
 Group type: To determine group semantics, as explained subsequently.
 Counters: Updated when packets are processed by a group.
 Action buckets: An ordered list of action buckets, where each action

bucket contains a set of actions to execute and associated parameters.
 Each group includes a set of one or more action buckets. Each bucket contains a
list of actions. Unlike the action set associated with a flow table entry, which is a
list of actions that accumulate while the packet is processed by each flow table,
the action list in a bucket is executed when a packet reaches a bucket. The action
list is executed in sequence and generally ends with the Output action, which
forwards the packet to a specified port. The action list may also end with the
Group action, which sends the packet to another group. This enables the
chaining of groups for more complex processing.
 A group is designated as one of the types depicted in Figure 4.10: all, select, fast
failover, and indirect.

Configuration and Management of Networks

Software Defined Networks – Group Table

FIGURE 4.10 Group Types

The all type executes all the buckets in the group. Thus, each arriving packet is
effectively cloned. Typically, each bucket will designate a different output port,
so that the incoming packet is then transmitted on multiple output ports. This
group is used for multicast or broadcast forwarding.
 The select type executes one bucket in the group, based on a switch-computed
selection algorithm (for example, hash on some user-configured tuple or simple
round-robin). The selection algorithm should implement equal load sharing or,
optionally, load sharing based on bucket weights assigned by the SDN
controller.
 The fast failover type executes the first live bucket. Port liveness is managed by
code outside of the scope of OpenFlow and may have to do with routing
algorithms or congestion control mechanisms. The buckets are evaluated in

Configuration and Management of Networks

Software Defined Networks – Flow Table Example:Flow Table

Header Fields Counters Actions

If ingress port == 2 Drop packet

if IP_addr == 129.79.1.1 re-write to 10.0.1.1, forward
port 3

if Eth Addr == 00:45:23 add VLAN id 110, forward
port 2

if ingress port == 4 forward port 5, 6

if Eth Type == ARP forward CONTROLLER

If ingress port == 2 && Eth
Type == ARP forward NORMAL

Priority

32768

32768

32768

32768

32768

40000

Flow Table

Header Fields Counters Actions

If ingress port == 2 Drop packet

if IP_addr == 129.79.1.1 re-write to 10.0.1.1, forward
port 3

Priority

32768

32768

Each Flow Table entry has two timers: idle_timeout
seconds of no matching packets
after which the flow is removed
zero means never timeout

hard_timeout
seconds after which the flow is
removed
zero mean never timeout

If both idle_timeout and hard_timeout are set, then the flow is removed when the first of the two expires.

Flow Table

Header Fields Counters Actions

If ingress port == 2 Drop packet

if IP_addr == 129.79.1.1 re-write to 10.0.1.1, forward
port 3

Priority

32768

32768

Each Flow Table entry has two timers: idle_timeout
seconds of no matching packets
after which the flow is removed
zero means never timeout

hard_timeout
seconds after which the flow is
removed
zero mean never timeout

If both idle_timeout and hard_timeout are set, then the flow is removed when the first of the two expires.

Configuration and Management of Networks

Software Defined Networks – OpenFlow Messages:

Configuration and Management of Networks

Software Defined Networks – OpenFlow Messages:

TABLE 4.2 OpenFlow Messages

 Controller to switch: These messages are initiated by the controller and,
in some cases, require a response from the switch. This class of messages
enables the controller to manage the logical state of the switch, including
its configuration and details of flow and group table entries. Also included
in this class is the Packet-out message. This message is sent by the
controller to a switch when that switch sends a packet to the controller and
the controller decides not to drop the packet but to direct it to a switch
output port.

 Asynchronous: These types of messages are sent without solicitation
from the controller. This class includes various status messages to the
controller. Also included is the Packet-in message, which may be used by
the switch to send a packet to the controller when there is no flow table
match.

 Symmetric: These messages are sent without solicitation from either the
controller or the switch. They are simple yet helpful. Hello messages are
typically sent back and forth between the controller and switch when the
connection is first established. Echo request and reply messages can be
used by either the switch or controller to measure the latency or
bandwidth of a controller-switch connection or just verify that the device
is up and running. The Experimenter message is used to stage features to

Symmetric

TABLE 4.2 OpenFlow Messages

 Controller to switch: These messages are initiated by the controller and,
in some cases, require a response from the switch. This class of messages
enables the controller to manage the logical state of the switch, including
its configuration and details of flow and group table entries. Also included
in this class is the Packet-out message. This message is sent by the
controller to a switch when that switch sends a packet to the controller and
the controller decides not to drop the packet but to direct it to a switch
output port.

 Asynchronous: These types of messages are sent without solicitation
from the controller. This class includes various status messages to the
controller. Also included is the Packet-in message, which may be used by
the switch to send a packet to the controller when there is no flow table
match.

 Symmetric: These messages are sent without solicitation from either the
controller or the switch. They are simple yet helpful. Hello messages are
typically sent back and forth between the controller and switch when the
connection is first established. Echo request and reply messages can be
used by either the switch or controller to measure the latency or
bandwidth of a controller-switch connection or just verify that the device
is up and running. The Experimenter message is used to stage features to

Configuration and Management of Networks

Software Defined Networks – Control Plane

Controller typical functions

Control Plane Functions

 Figure 5.2 illustrates the functions performed by SDN controllers. The figure
illustrates the essential functions that any controller should provide, as suggested
in a paper by Kreutz [KREU15], which include the following:

FIGURE 5.2 SDN Control Plane Functions and Interfaces

 Shortest path forwarding: Uses routing information collected from
switches to establish preferred routes.

 Notification manager: Receives, processes, and forwards to an
application events, such as alarm notifications, security alarms, and state
changes.

 Security mechanisms: Provides isolation and security enforcement
between applications and services.

 Topology manager: Builds and maintains switch interconnection
topology information.

 Statistics manager: Collects data on traffic through the switches.
 Device manager: Configures switch parameters and attributes and

manages flow tables.
 The functionality provided by the SDN controller can be viewed as a network
operating system (NOS). As with a conventional OS, an NOS provides

Configuration and Management of Networks

Software Defined Networks – Control Plane

Most prominent Controllers

essential services, common application programming interfaces (APIs), and an
abstraction of lower-layer elements to developers. The functions of an SDN
NOS, such as those in the preceding list, enable developers to define network
policies and manage networks without concern for the details of the network
device characteristics, which may be heterogeneous and dynamic. The
northbound interface, discussed subsequently, provides a uniform means for
application developers and network managers to access SDN service and
perform network management tasks. Further, well-defined northbound interfaces
enable developers to create software that is independent not only of data plane
details but to a great extent usable with a variety of SDN controller servers.
 A number of different initiatives, both commercial and open source, have
resulted in SDN controller implementations. The following list describes a few
prominent ones:
 OpenDaylight: An open source platform for network programmability to

enable SDN, written in Java. OpenDaylight was founded by Cisco and
IBM, and its membership is heavily weighted toward network vendors.
OpenDaylight can be implemented as a single centralized controller, but
enables controllers to be distributed where one or multiple instances may
run on one or more clustered servers in the network.

 Open Network Operating System (ONOS): An open source SDN NOS,
initially released in 2014. It is a nonprofit effort funded and developed by
a number of carriers, such as AT&T and NTT, and other service
providers. Significantly, ONOS is supported by the Open Networking
Foundation, making it likely that ONOS will be a major factor in SDN
deployment. ONOS is designed to be used as a distributed controller and
provides abstractions for partitioning and distributing network state onto
multiple distributed controllers.

 POX: An open source OpenFlow controller that has been implemented by
a number of SDN developers and engineers. POX has a well written API
and documentation. It also provides a web-based graphical user interface
(GUI) and is written in Python, which typically shortens its experimental
and developmental cycles compared to some other implementation
languages, such as C++.

 Beacon: An open source package developed at Stanford. Written in Java
and highly integrated into the Eclipse integrated development
environment (IDE). Beacon was the first controller that made it possible

essential services, common application programming interfaces (APIs), and an
abstraction of lower-layer elements to developers. The functions of an SDN
NOS, such as those in the preceding list, enable developers to define network
policies and manage networks without concern for the details of the network
device characteristics, which may be heterogeneous and dynamic. The
northbound interface, discussed subsequently, provides a uniform means for
application developers and network managers to access SDN service and
perform network management tasks. Further, well-defined northbound interfaces
enable developers to create software that is independent not only of data plane
details but to a great extent usable with a variety of SDN controller servers.
 A number of different initiatives, both commercial and open source, have
resulted in SDN controller implementations. The following list describes a few
prominent ones:
 OpenDaylight: An open source platform for network programmability to

enable SDN, written in Java. OpenDaylight was founded by Cisco and
IBM, and its membership is heavily weighted toward network vendors.
OpenDaylight can be implemented as a single centralized controller, but
enables controllers to be distributed where one or multiple instances may
run on one or more clustered servers in the network.

 Open Network Operating System (ONOS): An open source SDN NOS,
initially released in 2014. It is a nonprofit effort funded and developed by
a number of carriers, such as AT&T and NTT, and other service
providers. Significantly, ONOS is supported by the Open Networking
Foundation, making it likely that ONOS will be a major factor in SDN
deployment. ONOS is designed to be used as a distributed controller and
provides abstractions for partitioning and distributing network state onto
multiple distributed controllers.

 POX: An open source OpenFlow controller that has been implemented by
a number of SDN developers and engineers. POX has a well written API
and documentation. It also provides a web-based graphical user interface
(GUI) and is written in Python, which typically shortens its experimental
and developmental cycles compared to some other implementation
languages, such as C++.

 Beacon: An open source package developed at Stanford. Written in Java
and highly integrated into the Eclipse integrated development
environment (IDE). Beacon was the first controller that made it possible

essential services, common application programming interfaces (APIs), and an
abstraction of lower-layer elements to developers. The functions of an SDN
NOS, such as those in the preceding list, enable developers to define network
policies and manage networks without concern for the details of the network
device characteristics, which may be heterogeneous and dynamic. The
northbound interface, discussed subsequently, provides a uniform means for
application developers and network managers to access SDN service and
perform network management tasks. Further, well-defined northbound interfaces
enable developers to create software that is independent not only of data plane
details but to a great extent usable with a variety of SDN controller servers.
 A number of different initiatives, both commercial and open source, have
resulted in SDN controller implementations. The following list describes a few
prominent ones:
 OpenDaylight: An open source platform for network programmability to

enable SDN, written in Java. OpenDaylight was founded by Cisco and
IBM, and its membership is heavily weighted toward network vendors.
OpenDaylight can be implemented as a single centralized controller, but
enables controllers to be distributed where one or multiple instances may
run on one or more clustered servers in the network.

 Open Network Operating System (ONOS): An open source SDN NOS,
initially released in 2014. It is a nonprofit effort funded and developed by
a number of carriers, such as AT&T and NTT, and other service
providers. Significantly, ONOS is supported by the Open Networking
Foundation, making it likely that ONOS will be a major factor in SDN
deployment. ONOS is designed to be used as a distributed controller and
provides abstractions for partitioning and distributing network state onto
multiple distributed controllers.

 POX: An open source OpenFlow controller that has been implemented by
a number of SDN developers and engineers. POX has a well written API
and documentation. It also provides a web-based graphical user interface
(GUI) and is written in Python, which typically shortens its experimental
and developmental cycles compared to some other implementation
languages, such as C++.

 Beacon: An open source package developed at Stanford. Written in Java
and highly integrated into the Eclipse integrated development
environment (IDE). Beacon was the first controller that made it possible

for beginner programmers to work with and create a working SDN
environment.

 Floodlight: An open source package developed by Big Switch Networks.
Although its beginning was based on Beacon, it was built using Apache
Ant, which is a very popular software build tool that makes the
development of Floodlight easier and more flexible. Floodlight has an
active community and has a large number of features that can be added to
create a system that best meets the requirements of a specific
organization. Both a web-based and Java-based GUI are available and
most of its functionality is exposed through a REST API.

 Ryu: An open source component-based SDN framework developed by
NTT Labs. It is open sourced and fully developed in python.

 Onix: Another distributed controller, jointly developed by VMWare,
Google, and NTT. Onix is a commercially available SDN controller.

 See Section 5.3, “Open-Daylight”
 Perhaps the most significant controller on this list is OpenDaylight, described
subsequently in Section 5.3.

Southbound Interface

 The southbound interface provides the logical connection between the SDN
controller and the data plane switches (see Figure 5.3). Some controller products
and configurations support only a single southbound protocol. A more flexible
approach is the use of a southbound abstraction layer that provides a common
interface for the control plane functions while supporting multiple southbound
APIs.

for beginner programmers to work with and create a working SDN
environment.

 Floodlight: An open source package developed by Big Switch Networks.
Although its beginning was based on Beacon, it was built using Apache
Ant, which is a very popular software build tool that makes the
development of Floodlight easier and more flexible. Floodlight has an
active community and has a large number of features that can be added to
create a system that best meets the requirements of a specific
organization. Both a web-based and Java-based GUI are available and
most of its functionality is exposed through a REST API.

 Ryu: An open source component-based SDN framework developed by
NTT Labs. It is open sourced and fully developed in python.

 Onix: Another distributed controller, jointly developed by VMWare,
Google, and NTT. Onix is a commercially available SDN controller.

 See Section 5.3, “Open-Daylight”
 Perhaps the most significant controller on this list is OpenDaylight, described
subsequently in Section 5.3.

Southbound Interface

 The southbound interface provides the logical connection between the SDN
controller and the data plane switches (see Figure 5.3). Some controller products
and configurations support only a single southbound protocol. A more flexible
approach is the use of a southbound abstraction layer that provides a common
interface for the control plane functions while supporting multiple southbound
APIs.

§ Ryu: An open source component-based software defined networking
framework supports various protocols for managing network devices,
such as OpenFlow, Netconf, OF-config, etc.

Configuration and Management of Networks

Software Defined Networks – Control Plane

Interfaces

FIGURE 5.3 SDN Controller Interfaces

The most commonly implemented southbound API is OpenFlow, covered in
some detail in Chapter 4, “SDN Data Plane and OpenFlow.” Other southbound
interfaces include the following:
 Open vSwitch Database Management Protocol (OVSDB): Open

vSwitch (OVS) an open source software project which implements virtual
switching that is interoperable with almost all popular hypervisors. OVS
uses OpenFlow for message forwarding in the control plane for both
virtual and physical ports. OVSDB is the protocol used to manage and
configure OVS instances.

Configuration and Management of Networks

Software Defined Networks – Control plane SDNs

Northbound API

Programming Interface for applications and orchestration system. Several
“latitudes” are needed

FIGURE 5.4 Latitude of Northbound Interfaces

Figure 5.5 shows a simplified example of an architecture with multiple levels of
northbound APIs, the levels of which are described in the list that follows.

C.G.R

Configuration and Management of Networks

Software Defined Networks – Control plane SDNs

Logically Distributed Controllers

Centralized Versus Distributed Controllers

 A key architectural design decision is whether a single centralized controller or a
distributed set of controllers will be used to control the data plane switches. A
centralized controller is a single server that manages all the data plane switches
in the network.
 In a large enterprise network, the deployment of a single controller to manage all
network devices would prove unwieldy or undesirable. A more likely scenario is
that the operator of a large enterprise or carrier network divides the whole
network into a number of nonoverlapping SDN domains, also called SDN
islands (Figure 5.10), managed by distributed controllers. Reasons for using
SDN domains include those in the list that follows.

FIGURE 5.10 SDN Domain Structure

 Scalability: The number of devices an SDN controller can feasibly
manage is limited. Therefore, a reasonably large network may need to
deploy multiple SDN controllers.

 Reliability: The use of multiple controllers avoids the risk of a single
point of failure.

 Privacy: A carrier may choose to implement different privacy policies in
different SDN domains. For example, an SDN domain may be dedicated
to a set of customers who implement their own highly customized privacy
policies, requiring that some networking information in this domain (for
example, network topology) should not be disclosed to an external entity.

Centralized Versus Distributed Controllers

 A key architectural design decision is whether a single centralized controller or a
distributed set of controllers will be used to control the data plane switches. A
centralized controller is a single server that manages all the data plane switches
in the network.
 In a large enterprise network, the deployment of a single controller to manage all
network devices would prove unwieldy or undesirable. A more likely scenario is
that the operator of a large enterprise or carrier network divides the whole
network into a number of nonoverlapping SDN domains, also called SDN
islands (Figure 5.10), managed by distributed controllers. Reasons for using
SDN domains include those in the list that follows.

FIGURE 5.10 SDN Domain Structure

 Scalability: The number of devices an SDN controller can feasibly
manage is limited. Therefore, a reasonably large network may need to
deploy multiple SDN controllers.

 Reliability: The use of multiple controllers avoids the risk of a single
point of failure.

 Privacy: A carrier may choose to implement different privacy policies in
different SDN domains. For example, an SDN domain may be dedicated
to a set of customers who implement their own highly customized privacy
policies, requiring that some networking information in this domain (for
example, network topology) should not be disclosed to an external entity.

Configuration and Management of Networks

Software Defined Networks – Programming SDNs

OpenFlow: Programming at this level of abstraction is not easy!
• Difficult to perform multiple independent tasks (e.g. routing, access

control)

• OpenFlow is a low level of abstraction

• Race Conditions, if switch-level rules are not installed properly

Configuration and Management of Networks

Software Defined Networks – Programming SDNs Application
Design

214 CHAPTER 10 SDN Applications

application would normally be a packet arriving at the controller from a switch, resulting in an action.
Such actions include:

• Packet-specific actions. The controller can tell the switch to drop the packet, to flood the packet, to
send the packet out a specific port, or to forward the packet through the NORMAL non-OpenFlow
packet-processing pipeline, as described in Section 5.3.4.

• Flow-specific actions. The controller can program new flow entries on the switch, intended to allow
the switch to handle certain future packets locally without requiring intervention by the controller.

Other actions are possible, some of which may take place outside the normal OpenFlow control path,
but the packet-specific and flow-specific actions constitute the predominant behavior of a reactive SDN
application.

Figure 10.1 shows the general design of a reactive application. Notice that the controller has a listener
interface that allows the application to provide listeners for switch, device, and message (incoming
packet) events. Typically, a reactive application will have a module to handle packets incoming to the
controller that have been forwarded through the message listener. This packet processing can then act
on the packet. Typical actions include returning the request to the switch, telling it what to do with the
packet (e.g., forward out a specific port, forward NORMAL or drop the packet). Other actions taken by
the application can involve setting flows on the switch in response to the received packet, which will
inform the switch what to do the next time it sees a packet of this nature.

For reactive applications, the last flow entry will normally be programmed to match any packet and
to direct the switch to forward that otherwise unmatched packet to the controller. This methodology
is precisely what makes the application reactive. When a packet not matching any existing rule is
encountered, it is forwarded to the controller so that the controller can react to it via some appropriate
action. A packet may also be forwarded to the controller in the event that it matches a flow entry and
the associated action stipulates that the packet be passed to the controller.

 Match: …, Action=CONTROLLER
 Match: …, Action=NORMAL

 Match: <else> Action=CONTROLLER

Listener APIs Response
APIs

Sw
itc

h

D
ev

ic
e

M
es

sa
ge

Pa
ck

et
Ac

tio
n

Fl
ow

C
ha

ng
es

Process Packet

Reactive Application

Switch

SDN Controller

 Packets forwarded
to controller

 Take action on received packet
 Make flow changes as appropriate

FIGURE 10.1

Reactive application design.

Configuration and Management of Networks

Software Defined Networks – Programming SDNs Application
Design

216 CHAPTER 10 SDN Applications

▪ Match: …, Action=CONTROLLER
▪ Match: …, Action=NORMAL

▪ Match: <else> Action=DROP

Flow PusherN
et

w
or

ks

Sw
itc

he
s

H
os

ts

REST APIs

Switch
SDN Controller

 Set flows on devices

Proactive Application
Event

Listener
Configure

Flows
Network
Events

FIGURE 10.2

Proactive application design.

same ability to program flows as the reactive application but will tend to use wildcard matches more
frequently.

As shown in Figure 10.2, the last flow entry will typically be to DROP unmatched packets. This is
because proactive applications attempt to anticipate all traffic and program flow entries accordingly.
As a consequence, packets that do not match the configured set of rules are discarded. We remind the
reader that the match criteria for flow entries can be programmed such that most arriving packet types
are expected and match some entry before this final DROP entry. If this were not the case, the purely
proactive model could become an expensive exercise in dropping packets!

As mentioned earlier, there will be hybrid reactive-proactive applications that utilize a language such
as Java for listeners and communicate via some external means to the proactive part of the application.
The proactive component would then program new flow entries on the switch. As applications become
more complex, this hybrid model is likely to become more common. The comment made previously
about arriving packets in a proactive application matching some flow entry before the final DROP
entry is also germane to the case of hybrid applications. The proactive part of such hybrid applications
will have programmed higher-priority flow entries so that only a reasonable number of packets match
the final DROP entry. In such a hybrid model, the final entry will send all unmatched packets to the
controller, so it is important to limit this number to a rate that the controller can handle.

10.3 Analyzing Simple SDN Applications
Proactive, RESTful-based applications can run either on the same system as the controller or on a remote
system, since HTTP allows that flexibility. In contrast, reactive applications are tightly bound to the
controller as they access the controller via the native APIs (e.g., Java or C), and they run in the same
container or execution space. In Section 10.12 we provide an example of proactive applications that
use the RESTful flow pusher APIs. First, though, in Section 10.4 we look in detail at the source code

Configuration and Management of Networks

Software Defined Networks – Programming SDNs Floodlight
controller

Configuration and Management of Networks

Software Defined Networks – Programming SDNs Floodlight
controller - examples

Configurations of the modules to run (*.properties file):

Adding modules (net.floodlightcontroller.core.module.IFloodlightModule)

Configuration and Management of Networks

Software Defined Networks – Programming SDNs Floodlight
controller - examples
Treating the reception of a Packet_In message:

Configuration and Management of Networks

Software Defined Networks – Programming SDNs Floodlight
controller - examples
Treating the reception of a Packet_In message:

Configuration and Management of Networks

Software Defined Networks – Programming SDNs Floodlight
controller - examples
Creating rules:

Configuration and Management of Networks

Software Defined Networks – Programming SDNs Floodlight
controller - examples
Creating Match clause; Actions and ApplyActions Instruction :

Configuration and Management of Networks

SDN – Programmable Data plane (P4)

P4: Programming Protocol-Independent
Packet Processors

Pat Bosshart†, Dan Daly*, Glen Gibb†, Martin Izzard†, Nick McKeown‡, Jennifer Rexford**,
Cole Schlesinger**, Dan Talayco†, Amin Vahdat¶, George Varghese§, David Walker**

†Barefoot Networks *Intel ‡Stanford University **Princeton University ¶Google §Microsoft Research

ABSTRACT
P4 is a high-level language for programming protocol-inde-

pendent packet processors. P4 works in conjunction with

SDN control protocols like OpenFlow. In its current form,

OpenFlow explicitly specifies protocol headers on which it

operates. This set has grown from 12 to 41 fields in a few

years, increasing the complexity of the specification while

still not providing the flexibility to add new headers. In this

paper we propose P4 as a strawman proposal for how Open-

Flow should evolve in the future. We have three goals: (1)

Reconfigurability in the field: Programmers should be able

to change the way switches process packets once they are

deployed. (2) Protocol independence: Switches should not

be tied to any specific network protocols. (3) Target inde-

pendence: Programmers should be able to describe packet-

processing functionality independently of the specifics of the

underlying hardware. As an example, we describe how to

use P4 to configure a switch to add a new hierarchical label.

1. INTRODUCTION
Software-Defined Networking (SDN) gives operators pro-

grammatic control over their networks. In SDN, the con-

trol plane is physically separate from the forwarding plane,

and one control plane controls multiple forwarding devices.

While forwarding devices could be programmed in many

ways, having a common, open, vendor-agnostic interface

(like OpenFlow) enables a control plane to control forward-

ing devices from di↵erent hardware and software vendors.

Version Date Header Fields

OF 1.0 Dec 2009 12 fields (Ethernet, TCP/IPv4)

OF 1.1 Feb 2011 15 fields (MPLS, inter-table metadata)

OF 1.2 Dec 2011 36 fields (ARP, ICMP, IPv6, etc.)

OF 1.3 Jun 2012 40 fields

OF 1.4 Oct 2013 41 fields

Table 1: Fields recognized by the OpenFlow standard

The OpenFlow interface started simple, with the abstrac-

tion of a single table of rules that could match packets on a

dozen header fields (e.g., MAC addresses, IP addresses, pro-

tocol, TCP/UDP port numbers, etc.). Over the past five

years, the specification has grown increasingly more com-
plicated (see Table 1), with many more header fields and

multiple stages of rule tables, to allow switches to expose

more of their capabilities to the controller.

The proliferation of new header fields shows no signs of

stopping. For example, data-center network operators in-

creasingly want to apply new forms of packet encapsula-

tion (e.g., NVGRE, VXLAN, and STT), for which they re-

sort to deploying software switches that are easier to extend

with new functionality. Rather than repeatedly extending

the OpenFlow specification, we argue that future switches

should support flexible mechanisms for parsing packets and

matching header fields, allowing controller applications to

leverage these capabilities through a common, open inter-

face (i.e., a new “OpenFlow 2.0” API). Such a general, ex-

tensible approach would be simpler, more elegant, and more

future-proof than today’s OpenFlow 1.x standard.

Figure 1: P4 is a language to configure switches.

Recent chip designs demonstrate that such flexibility can

be achieved in custom ASICs at terabit speeds [1, 2, 3]. Pro-

gramming this new generation of switch chips is far from

easy. Each chip has its own low-level interface, akin to

microcode programming. In this paper, we sketch the de-

sign of a higher-level language for Programming Protocol-

independent Packet Processors (P4). Figure 1 shows the

relationship between P4—used to configure a switch, telling

it how packets are to be processed—and existing APIs (such

as OpenFlow) that are designed to populate the forwarding

tables in fixed function switches. P4 raises the level of ab-

straction for programming the network, and can serve as a

ACM SIGCOMM Computer Communication Review 88 Volume 44, Number 3, July 2014

• P4—used to configure a switch, telling it how packets are to be
processed

• OpenFlow - designed to populate the forwarding tables in fixed function
switches

Tell the switch how to operate, rather than be
constrained by a fixed switch design

• PISA (Protocol Independent Switch Architecture) : Flexible Match+Action ASICs
◦ Intel Flexpipe, Cisco Doppler, Cavium (Xpliant), Barefoot Tofino, …

• NPU (Network processing unit)
◦ EZchip, Netronome, …

• CPU (Virtual Software Devices)
◦ Open Vswitch, eBPF, DPDK, VPP…

• FPGA
◦ Xilinx, Altera, …

These devices let us tell them how to process packets.

Configuration and Management of Networks

SDN – Programmable Data plane (P4)

Configuration and Management of Networks

P4 – Example simple switch:

• Programmable parser to allow new headers (Openflow assumes a fixed parser)
• OpenFlow assumes the match+action stages are in series, in P4 they can be in

parallel.

general interface between the controller and the switches.

That is, we believe that future generations of OpenFlow

should allow the controller to tell the switch how to operate,

rather than be constrained by a fixed switch design. The key

challenge is to find a “sweet spot” that balances the need

for expressiveness with the ease of implementation across a

wide range of hardware and software switches. In designing

P4, we have three main goals:

• Reconfigurability. The controller should be able to re-

define the packet parsing and processing in the field.

• Protocol independence. The switch should not be tied

to specific packet formats. Instead, the controller should

be able to specify (i) a packet parser for extracting header

fields with particular names and types and (ii) a collection

of typed match+action tables that process these headers.

• Target independence. Just as a C programmer does

not need to know the specifics of the underlying CPU, the

controller programmer should not need to know the de-

tails of the underlying switch. Instead, a compiler should

take the switch’s capabilities into account when turning

a target-independent description (written in P4) into a

target-dependent program (used to configure the switch).

The outline of the paper is as follows. We begin by in-

troducing an abstract switch forwarding model. Next, we

explain the need for a new language to describe protocol-

independent packet processing. We then present a simple

motivating example where a network operator wants to sup-

port a new packet-header field and process packets in mul-

tiple stages. We use this to explore how the P4 program

specifies headers, the packet parser, the multiple match+

action tables, and the control flow through these tables. Fi-

nally, we discuss how a compiler can map P4 programs to

target switches.

Related work. In 2011, Yadav et al. [4] proposed an ab-

stract forwarding model for OpenFlow, but with less empha-

sis on a compiler. Kangaroo [1] introduced the notion of pro-

grammable parsing. Recently, Song [5] proposed protocol-

oblivious forwarding which shares our goal of protocol in-

dependence, but is targeted more towards network proces-

sors. The ONF introduced table typing patterns to express

the matching capabilities of switches [6]. Recent work on

NOSIX [7] shares our goal of flexible specification of match+

action tables, but does not consider protocol-independence

or propose a language for specifying the parser, tables, and

control flow. Other recent work proposes a programmatic in-

terface to the data plane for monitoring, congestion control,

and queue management [8, 9]. The Click modular router [10]

supports flexible packet processing in software, but does not

map programs to a variety of target hardware switches.

2. ABSTRACT FORWARDING MODEL
In our abstract model (Fig. 2), switches forward packets

via a programmable parser followed by multiple stages of

match+action, arranged in series, parallel, or a combination

of both. Derived from OpenFlow, our model makes three

generalizations. First, OpenFlow assumes a fixed parser,

whereas our model supports a programmable parser to allow

new headers to be defined. Second, OpenFlow assumes the

match+action stages are in series, whereas in our model they

can be in parallel or in series. Third, our model assumes that

actions are composed from protocol-independent primitives

supported by the switch.

Our abstract model generalizes how packets are processed

in di↵erent forwarding devices (e.g., Ethernet switches, load-

balancers, routers) and by di↵erent technologies (e.g., fixed-

function switch ASICs, NPUs, reconfigurable switches, soft-

ware switches, FPGAs). This allows us to devise a com-

mon language (P4) to represent how packets are processed

in terms of our common abstract model. Hence, program-

mers can create target-independent programs that a com-

piler can map to a variety of di↵erent forwarding devices,

ranging from relatively slow software switches to the fastest

ASIC-based switches.

Figure 2: The abstract forwarding model.

The forwarding model is controlled by two types of oper-

ations: Configure and Populate. Configure operations pro-

gram the parser, set the order of match+action stages, and

specify the header fields processed by each stage. Config-

uration determines which protocols are supported and how

the switch may process packets. Populate operations add

(and remove) entries to the match+action tables that were

specified during configuration. Population determines the

policy applied to packets at any given time.

For the purposes of this paper, we assume that configura-

tion and population are two distinct phases. In particular,

the switch need not process packets during configuration.

However, we expect implementations will allow packet pro-

cessing during partial or full reconfiguration enabling up-

grades with no downtime. Our model deliberately allows

for, and encourages, reconfiguration that does not interrupt

forwarding.

Clearly, the configuration phase has little meaning in fixed-

function ASIC switches; for this type of switch, the com-

ACM SIGCOMM Computer Communication Review 89 Volume 44, Number 3, July 2014

Configuration and Management of Networks

P4 : (Based in Protocol-Independent Switch Architecture)

Programmable
Parser

Programmable
Deparser

Programmable Match-Action Pipeline

Programmer declares the
headers that should be

recognized and their order in
the packet

Programmer defines the
tables and the exact
processing algorithm

Programmer declares
how the output packet

will look on the wire

Configuration and Management of Networks

P4 : (Based Protocol-Independent Switch Architecture)

• Packet is parsed into individual headers (parsed representation)
• Headers and intermediate results can be used for matching and

actions
• Headers can be modified, added or removed
• Packet is deparsed (serialized)

Programmable
Parser

Programmable
Deparser

Configuration and Management of Networks

P4 : Program example

#include <core.p4>
#include <v1model.p4>
struct metadata {}
struct headers {}

parser MyParser(packet_in packet,
 out headers hdr,
 inout metadata meta,
 inout standard_metadata_t standard_metadata) {

 state start { transition accept; }
}

control MyVerifyChecksum(inout headers hdr, inout metadata
meta) { apply { } }

control MyIngress(inout headers hdr,
 inout metadata meta,
 inout standard_metadata_t standard_metadata) {
apply {
 if (standard_metadata.ingress_port == 1) {
 standard_metadata.egress_spec = 2;
 } else if (standard_metadata.ingress_port == 2) {
 standard_metadata.egress_spec = 1;
 }
 }
}

control MyEgress(inout headers hdr,
 inout metadata meta,
 inout standard_metadata_t standard_metadata) {
 apply { }
}

control MyComputeChecksum(inout headers hdr, inout metadata
meta) {
 apply { }
}

control MyDeparser(packet_out packet, in headers hdr) {
 apply { }
}

V1Switch(
 MyParser(),
 MyVerifyChecksum(),
 MyIngress(),
 MyEgress(),
 MyComputeChecksum(),
 MyDeparser()
) main;

Configuration and Management of Networks

Software Defined Networks – Flavours

So far we have been discussing Open SDN:

Generic Hardware – no functionality besides forwarding tables

Other flavours include – API based SDN:

This can be seen as Network Management SDN

168 CHAPTER 7 EMERGING MODELS

• Vendor Protection: Another argument is that using existing protocols and devices helps
established vendors continue to dominate markets in which they are already the leader.

The emerging trends toward legacy protocols such as Network Configuration Protocol (NETCONF)
and Border Gateway Protocol (BGP), and toward the SDN controllers that support these protocols are
discussed in the sections that follow.

DISCUSSION QUESTION:
Discuss whether you believe that the influence on SDN by dominant networking vendors is a positive or negative influence
on the advancement of networking technology.

7.1.2 NETWORK MANAGEMENT VERSUS SDN
One of the protocols that is being used for the application of SDN-based policies is NETCONF, which
we examine in detail in the sections that follow. But the use of such a protocol, which was developed
specifically as a means of improving the effectiveness of network management, raises the issue of
where network management ends and SDN begins. Is this type of solution just an improved network
management or is it really software defined networking?

In Chapter 6 we compared and contrasted three classes of SDN solutions: Open SDN, SDN via APIs,
and SDN via Overlays. As that chapter illustrated, it is difficult to precisely circumscribe SDN. For the
purposes of this discussion, since network management in general shares many of the same attributes as
SDN (i.e., centralized control, network-wide views, network-wide policies), we consider such network
management-based solutions to also fall under the larger SDN umbrella.

Fig. 7.1 shows the spectrum of solutions being promoted as SDN. On the right hand side of
the picture is reactive OpenFlow, which involves packets getting forwarded to the controller via
PACKET_IN messages. This type of SDN solution is the most dramatically different from traditional
networking technologies, as highlighted in the figure. At the other end of the spectrum is network
management, which is the most similar to what we see in traditional networks today. Between those
extremes reside NETCONF, Border Gateway Protocol Link State (BGP-LS) and Path Computation
Element Protocol (PCE-P), which we describe later in this chapter. Note that the term PCEP is
frequently used as a substitute for PCE-P.

Spectrum of SDN technologies

Less disruptive
More evolutionary
Less risk

Traditional
network

management

NETCONF BGP-LS/PCEP Proactive
OpenFlow

Reactive
OpenFlow

More disruptive
More revolutionary

More risk

FIG. 7.1

SDN spectrum.

Configuration and Management of Networks
Software Defined Networks – API based SDN- using existing
protocols

170 CHAPTER 7 EMERGING MODELS

7.2 ADDITIONAL SDN PROTOCOL MODELS
This book has predominantly focused on OpenFlow as the original and the most prominent SDN
protocol being used in research, entrepreneurial efforts, and even in some established commercial
environments (e.g., Google). However, current trends indicate that much SDN development today
focuses on other protocols. We examine these protocols, controllers, and application development
trends in the following sections.

7.2.1 USING EXISTING PROTOCOLS TO CREATE SDN SOLUTIONS
Assuming that one of the goals of emerging SDN solutions is to reduce risk and to make use of existing
customer and vendor equipment, it is consistent that these solutions utilize existing protocols when
feasible. Established protocols such as NETCONF, BGP, and Multiprotocol Label Switching (MPLS)
are all potentially relevant here. These are mature protocols that are used in massively scaled production
networks. Utilizing these protocols to implement SDN solutions makes sense for those interested in
directing their SDN efforts along an evolutionary path utilizing existing technologies.

Fig. 7.2 shows a real-life example of existing protocols being used to create an SDN solution.
The figure depicts some of the main components involved in the OpenDaylight (ODL) controller’s
BGP-LS/PCE-P plugin. Starting at the top of the figure, we see that there are three distinct protocols
involved:

OSPF

OSPF

OSPF

OSPF

BGP-LS

OSPF
BGP

BGP

BGP
Edge Edge

Edge

Core

Route reflector

MPLS LSPs via PCEP

BGP-LS/PCEP overview

ODL

PCE BGP-LS BGP Topos

App App App. . .

Link state topology

Note: BGP IPv4 Topo comes from route reflector

IPv4 topology

Route reflector

Core

Edge

FIG. 7.2

BGP-LS/PCE-P overview.

7.2 ADDITIONAL SDN PROTOCOL MODELS 175

• RIB Configuration: Within ODL there are APIs for creating a RIB application which can be used
to inject routes into the network, based on the topology information, traffic statistics, congestion
points to be avoided, as well as other possible relevant data.

A key aspect of this technique is that the ODL’s controller’s BGP plugin appears to the network as
a normal BGP node. Note that the plugin does not advertise itself as a next hop for any of the routes.
It will, however, effect changes on the adjacent nodes that will in turn propagate routing information
throughout the network. In this way, an SDN application running on ODL can force RIB changes
throughout the network, thereby achieving SDN-like agility and automatic network reconfiguration.

7.2.4 USING THE BGP-LS PROTOCOL FOR SDN
Figs. 7.6 and 7.7 depict the operation of the BGP-LS/PCE-P plugin on ODL.

• BGP-LS is used to pass link-state (OSPF or IS-IS) Interior Gateway Protocol (IGP) information
about topology to ODL.

• PCE-P is used to transmit routing information from the PCE Server to the PCE clients in the
network. A PCE client is also more simply known as a Path Computation Client (PCC).

• MPLS will be used to forward packets throughout the network, using the Label Switched Paths
(LSPs) transmitted to head-end nodes via PCE-P.

Fig. 7.6 illustrates an IGP network of OSPF-supporting routers, sharing topology information with
ODL. At a high level, BGP-LS is running on one of the OSPF (or another IGP) nodes in the network,
and the IGP shares topology information with BGP-LS running on that node. That BGP-LS node in turn
shares the topology information with the BGP-LS plugin running in ODL. That topology information
is made available to the SDN application running on ODL, which can combine that knowledge with

App
ODL

REST

BGP-LS

OSPF

OSPF

OSPF OSPF

OSPF

BGP-LS

OSPF

FIG. 7.6

SDN BGP-LS topology.

Configuration and Management of Networks

Software Defined Networks – API based SDN- control points

7.2 ADDITIONAL SDN PROTOCOL MODELS 171

• BGP-LS: The BGP-LS protocol is used by ODL to gather link state topology information from the
routing protocols running in the clouds in the figure. This topology reflects routers and
interconnecting links within the Open Shortest Path First (OSPF) or Intermediate System to
Intermediate System (IS-IS) domains.

• BGP: The BGP protocol is used by ODL to gather IP Exterior Gateway Protocol (EGP) topology
from the BGP routers connecting the clouds (domains) in the picture.

• PCE-P: The PCE-P protocol is used by ODL to configure MPLS Label Switched Paths (LSPs) for
forwarding traffic across those networks.

The SDN solution in Fig. 7.2 will be discussed further in the following sections. The interested
reader can find detailed information in [1]. In the next sections we will examine these protocols as well
as NETCONF in order to understand their roles in SDN.

As we consider this use of existing protocols, a helpful perspective may be to look at the different
control points shown in Fig. 7.3 that are managed and configured by the SDN application. These control
points are Config, where general configuration is done, Routing Information Base (RIB), where routes
(e.g., prefixes and next-hops) are set, and Forwarding Information Base (FIB), which is lower level and
can be considered flows, where packet headers are matched and actions are taken.

The association between these control points and existing protocols is shown in Table 7.1. The table
shows control points in general terms. NETCONF’s role is for setting configuration parameters. BGP is

N
et

w
or

k
de

vi
ce

SDN control points

Config
Management plane
(device configuration)

Control plane
(routing (prefix+next hop))

Forwarding plane
(matches+actions)

Routing Information Base (RIB)

Forwarding Information Base (FIB)

SDN controller

FIG. 7.3

SDN control points.

Table 7.1 Comparison of Existing Protocols for SDN

Protocol Control Point Details

NETCONF Config Interfaces, ACLs, Static routes
BGP-LS - Topology discovery is used to pass link-state

IGP information about topology to ODL.
BGP RIB Topology discovery and setting RIB
PCE-P MPLS PCE to set MPLS LSPs. Used to transmit routing

information from the PCE Server to the
PCE Clients in the network.

BGP-FS Flows BGP-FlowSpec to set matches and actions

7.2 ADDITIONAL SDN PROTOCOL MODELS 171

• BGP-LS: The BGP-LS protocol is used by ODL to gather link state topology information from the
routing protocols running in the clouds in the figure. This topology reflects routers and
interconnecting links within the Open Shortest Path First (OSPF) or Intermediate System to
Intermediate System (IS-IS) domains.

• BGP: The BGP protocol is used by ODL to gather IP Exterior Gateway Protocol (EGP) topology
from the BGP routers connecting the clouds (domains) in the picture.

• PCE-P: The PCE-P protocol is used by ODL to configure MPLS Label Switched Paths (LSPs) for
forwarding traffic across those networks.

The SDN solution in Fig. 7.2 will be discussed further in the following sections. The interested
reader can find detailed information in [1]. In the next sections we will examine these protocols as well
as NETCONF in order to understand their roles in SDN.

As we consider this use of existing protocols, a helpful perspective may be to look at the different
control points shown in Fig. 7.3 that are managed and configured by the SDN application. These control
points are Config, where general configuration is done, Routing Information Base (RIB), where routes
(e.g., prefixes and next-hops) are set, and Forwarding Information Base (FIB), which is lower level and
can be considered flows, where packet headers are matched and actions are taken.

The association between these control points and existing protocols is shown in Table 7.1. The table
shows control points in general terms. NETCONF’s role is for setting configuration parameters. BGP is

N
et

w
or

k
de

vi
ce

SDN control points

Config
Management plane
(device configuration)

Control plane
(routing (prefix+next hop))

Forwarding plane
(matches+actions)

Routing Information Base (RIB)

Forwarding Information Base (FIB)

SDN controller

FIG. 7.3

SDN control points.

Table 7.1 Comparison of Existing Protocols for SDN

Protocol Control Point Details

NETCONF Config Interfaces, ACLs, Static routes
BGP-LS - Topology discovery is used to pass link-state

IGP information about topology to ODL.
BGP RIB Topology discovery and setting RIB
PCE-P MPLS PCE to set MPLS LSPs. Used to transmit routing

information from the PCE Server to the
PCE Clients in the network.

BGP-FS Flows BGP-FlowSpec to set matches and actions

Configuration and Management of Networks

Software Defined Networks – API based SDN- Netconf

172 CHAPTER 7 EMERGING MODELS

involved in setting RIB entries, and PCE-P is used for setting MPLS paths through the network. BGP-
LS is used to gather topology information from the RIB. BGP-FlowSpec (BGP-FS) is employed to set
matches and actions, similar to what is done with OpenFlow, using instead the BGP-FS functionality of
the router. BGP-FS leverages the BGP Route Reflection infrastructure and can use BGP Route Targets
to define which routers get which routes. Unlike OpenFlow, BGP-FS does not support layer 2 matches
but only layer 3 and above.

7.2.2 USING THE NETCONF PROTOCOL FOR SDN
NETCONF is a protocol developed in an Internet Engineering Task Force (IETF) working group and
became a standard in 2006, published in Request for Comments (RFC) 4741 [2] and later revised in
2011 and published in RFC 6241 [3]. The protocol was developed as a successor to the Simple Network
Management Protocol (SNMP) and attempted to address some of SNMP’s shortcomings. Some key
attributes of NETCONF are:

• Separation of configuration and state (operational) data. Configuration data is set on the device
to cause it to operate in a particular way. State (operational) data is set by the device as a result of
dynamic changes on the device due to network events and activities.

• Support for Remote Procedure Call (RPC)-like functionality. Such functionality was not
available in SNMP. With NETCONF, it is possible to invoke an operation on a device, passing
parameters and receiving returned results, much like RPC calls in the programming paradigm.

• Support for Notifications. This capability is a general event mechanism, whereby the managed
device can notify the management station of significant events. Within SNMP this concept is
called a trap.

• Support for transaction-based configurations. This allows for the configuration of multiple
devices to be initiated, but then rolled back in case of a failure at some point in the process.

NETCONF is a management protocol and as such it has the ability to configure only those
capabilities which are exposed by the device. Fig. 7.4 illustrates the difference between a

Device

App

OpenFlow tables

HW

App

NETCONF devices

Device

Device software

HW

Security Policy ...Etc

OpenFlow devices

FIG. 7.4

NETCONF versus OpenFlow.
Successor to the SNMP (Simple Network Management) NETCONF has:

• Support for Remote Procedure Calls : Invoke operation in a device.
• Support for Notifications: Managed device can notify management station of events

Only configures the exposed capabilities of the device

Uses XML to communicate with devices, or a REST API (RESTCONF)

Configuration and Management of Networks

Software Defined Networks – API based SDN- BGP

Obtain IPv4 topology:

• BGP plugin in controller implements a BGP node

174 CHAPTER 7 EMERGING MODELS

Software developers with web programming backgrounds often find RESTCONF easier to work
with than traditional use of NETCONF. This is due to the fact that REST APIs and JSON are generally
more familiar to web developers than XML RPCs. Hence, using RESTCONF makes communication
between the SDN controller and devices much simpler than it might be otherwise.

7.2.3 USING THE BGP PROTOCOL FOR SDN
Another protocol being promoted as a mechanism for SDN solutions is BGP. As we explained in
Section 1.5.2, BGP is the EGP routing protocol used in the Internet. In addition to this traditional
role, it is also used internally in some data centers. Consequently, the prospect of configuring BGP
routes dynamically in a software defined manner is appealing. There are two major aspects of the BGP
functionality currently used in ODL. These are:

• IPv4 Topology: The BGP plugin running inside ODL is implementing an actual BGP node, and as
such it has access to topological information via the Route Reflector (RR). This information
provides the topology between devices implementing the EGP, often referred to as the IPv4
topology. Fig. 7.5 shows an EGP network with routers supporting BGP, and an RR communicating
topology information to the BGP node running inside the ODL controller. This information helps
to provide the network-wide views characteristic of SDN solutions, and it can be used to
dynamically configure intelligent routing paths throughout the network, via RIB configuration.
This network-wide view is seen in Fig. 7.5 in the network topology to the right of the ODL
controller. Note that while we specifically cite the IPv4 topology here, other topologies, such as the
IPv6 topology, can be reported by the BGP plugin.

App
ODLREST

BGP

BGP

BGP

BGPRR

Route reflector

FIG. 7.5

SDN BGP topology.

RIB configuration:

• Controller uses BGP plugin to advertise routes (injecting routes)

Configuration and Management of Networks

Software Defined Networks – API based SDN- BGP-LS/PCE-P

BGP-LS – Used to obtain link state IGP information to controller

7.2 ADDITIONAL SDN PROTOCOL MODELS 175

• RIB Configuration: Within ODL there are APIs for creating a RIB application which can be used
to inject routes into the network, based on the topology information, traffic statistics, congestion
points to be avoided, as well as other possible relevant data.

A key aspect of this technique is that the ODL’s controller’s BGP plugin appears to the network as
a normal BGP node. Note that the plugin does not advertise itself as a next hop for any of the routes.
It will, however, effect changes on the adjacent nodes that will in turn propagate routing information
throughout the network. In this way, an SDN application running on ODL can force RIB changes
throughout the network, thereby achieving SDN-like agility and automatic network reconfiguration.

7.2.4 USING THE BGP-LS PROTOCOL FOR SDN
Figs. 7.6 and 7.7 depict the operation of the BGP-LS/PCE-P plugin on ODL.

• BGP-LS is used to pass link-state (OSPF or IS-IS) Interior Gateway Protocol (IGP) information
about topology to ODL.

• PCE-P is used to transmit routing information from the PCE Server to the PCE clients in the
network. A PCE client is also more simply known as a Path Computation Client (PCC).

• MPLS will be used to forward packets throughout the network, using the Label Switched Paths
(LSPs) transmitted to head-end nodes via PCE-P.

Fig. 7.6 illustrates an IGP network of OSPF-supporting routers, sharing topology information with
ODL. At a high level, BGP-LS is running on one of the OSPF (or another IGP) nodes in the network,
and the IGP shares topology information with BGP-LS running on that node. That BGP-LS node in turn
shares the topology information with the BGP-LS plugin running in ODL. That topology information
is made available to the SDN application running on ODL, which can combine that knowledge with

App
ODL

REST

BGP-LS

OSPF

OSPF

OSPF OSPF

OSPF

BGP-LS

OSPF

FIG. 7.6

SDN BGP-LS topology.

176 CHAPTER 7 EMERGING MODELS

App
REST

MPLS
BGP

BGP

BGP

MPLS
LSPs

via
PCEP

ODL

PCE

FIG. 7.7

SDN PCE-P and MPLS.

other knowledge about congestion, traffic, bandwidth, prioritization policies, and the like. This can be
combined by the SDN application, which will determine optimal routing paths, and will communicate
those MPLS paths to the PCCs in the network.

7.2.5 USING THE PCE-P PROTOCOL FOR SDN
PCE and its associated protocol PCE-P, have been in existence since roughly 2006 [4] and address
the need to compute complex paths through IGP networks, as well as across Autonomous System (AS)
boundaries via BGP. These paths are used in networks that support MPLS Traffic Engineering (MPLS-
TE). The computation done by the PCE can be located in any compute node—in an MPLS head-end
router, in the cloud, or on a dedicated server.

In Fig. 7.7, ODL (driven by an SDN application) sets MPLS Label Switched Paths (LSPs) using
PCE-P. Communication is between the PCE server in ODL and the PCC on the MPLS router.

The PCC runs on the head-end of each LSP. Using these LSPs, the router is able to route traffic using
MPLS through the network in an optimal manner. Using PCE-P in this fashion has advantages over a
pre-SDN counterpart called Constrained Shortest Path First (CSPF). Like our PCE-P model described
above, CSPF computes the LSPs but is limited to the topology of the IGP domains to which it belongs.
Conversely, PCE-P can run across multiple IGP domains. Another advantage of PCE-P is that it can
perform global optimization contrary to the CSPF model where each head-end router performs local
optimization only.

7.2.6 USING THE MPLS PROTOCOL FOR SDN
MPLS will be used to forward packets throughout the network using the LSPs transmitted to head-end
nodes via PCE-P. In the SDN solution described in the previous section the role of MPLS is to forward
traffic according to the paths configured by the SDN application running on ODL. Configuration takes

PCE-P – Used to set LSP paths that unlike traditional LSPs can be
inter-domain

Configuration and Management of Networks

Software Defined Networks – Via Overlay Virtual Networks
One of the prevailing solutions for Data centre Networks

76 CHAPTER 4 How SDN Works

This masks the differences between the device APIs to the application developer, who will see a single
northbound API despite the incompatible device interfaces on the southbound side. Obviously, this
homogeneity on the northbound interface is achieved by increased complexity within the controller.

In addition, the SDN precept of moving control off the switch onto a common controller was in
part intended to create simpler, less expensive switches. The SDN via existing APIs approach relies on
the same complicated, expensive switches as before. Admittedly, this is a double-edged sword, since a
company that already has the expensive switches may find it more expensive to change to less expensive
switches, considering they already have made the investment in the legacy devices.

Finally, though the SDN via existing APIs approach does allow some control over forwarding, in
particular with VLANs and VPNs, it does not allow the same degree of fine-grained control of individual
flows afforded by OpenFlow.

In summary, SDN via existing APIs is a step in the right direction, moving toward the goal of
centralized, software-based network control. It is possible to view SDN via existing APIs as a practical
extension of current functionality that is useful when the more radical OpenFlow solution is not yet
available or is otherwise inappropriate.

4.6.2 SDN via Hypervisor-Based Overlay Networks
Another more innovative alternate SDN method is what we refer to as hypervisor-based overlay net-
works. Under this concept the current physical network is left as it is, with networking devices and
their configurations remaining unchanged. Above that network, however, hypervisor-based virtualized
networks are erected. The systems at the edges of the network interact with these virtual networks,
which obscure the details of the physical network from the devices that connect to the overlays.

We depict such an arrangement in Figure 4.8, where we see the virtualized networks overlaying the
physical network infrastructure. The SDN applications making use of these overlay network resources

O
ve

rla
y

N
et

w
or

ks
Ph

ys
ic

al
 N

et
w

or
k

Network Device Network Device

Network Device Network Device Network Device

Physical Server

Hypervisor

Physical Server

Hypervisor

Physical Server

Hypervisor

FIGURE 4.8

Virtualized networks.

4.6 Alternate SDN Methods 77

PayloadMAC header IP header UDP header

Tunnel header PayloadMAC header IP header UDP header

FIGURE 4.9

Encapsulated frames.

are given access to virtualized networks and ports, which are abstract in nature and do not necessarily
relate directly to their physical counterparts below.

As shown in Figure 4.8, conceptually the virtual network traffic runs above the physical network
infrastructure. The hypervisors inject traffic into the virtual network and receive traffic from it. The
traffic of the virtual networks is passed through those physical devices, but the endpoints are unaware of
the details of the physical topology, the way routing occurs, or other basic network functions. Since these
virtual networks exist above the physical infrastructure, they can be controlled entirely by the devices
at the very edge of the network. In data centers, these would typically be the hypervisors of the VMs
that are running on each server.

The mechanism that makes this possible is tunneling, which uses encapsulation. When a packet
enters the edge of the virtual network at the source, the networking device (usually the hypervisor) will
take the packet in its entirety and encapsulate it within another frame. This is shown in Figure 4.9. Note
that the edge of the virtual network is called a tunnel endpoint or virtual tunnel endpoint (VTEP).

The hypervisor then takes this encapsulated packet and, based on information programmed by the
controller, sends it to the destination’s VTEP. This VTEP decapsulates the packet and forwards it to
the destination host. As the encapsulated packet is sent across the physical infrastructure, it is being
sent from the source’s VTEP to the destination’s VTEP. Consequently, the IP addresses are those of
the source and destination VTEP. Normally, in network virtualization, the VTEPs are associated with
hypervisors.

This tunneling mechanism is referred to as MAC-in-IP tunneling because the entire frame, from
MAC address inward, is encapsulated within this unicast IP frame, as shown in Figure 4.9. Different
vendors have established their own proprietary methods for MAC-in-IP tunneling. Specifically, Cisco
offers VXLAN [10], Microsoft uses NVGRE [11], and Nicira’s is called STT [12].

This approach mandates that a centralized controller be in charge of making sure there is always a
mapping from the actual destination host to the destination hypervisor that serves that host.

Figure 4.10 shows the roles of these VTEPs as they serve the source and destination host devices.
The virtual network capability is typically added to a hypervisor by extending it with a virtual switch.
We introduced the notion of virtual switch in Section 4.3.2, and it is well suited to the overlay network
concept. The virtual network has a virtual topology consisting of the virtual switches interconnected
by virtual point-to-point links. The virtual switches are depicted as the VTEPs in Figure 4.10, and the
virtual links are the tunnels interconnecting them. All the traffic on each virtual network is encapsulated
as shown in Figure 4.9 and sent VTEP-to-VTEP. The reader should note that the tunnels depicted in

Configuration and Management of Networks

Software Defined Networks – Via Overlay Virtual Networks

SDN is done with a controller interacting with virtual switches:

• Virtual Switches reside in the Hypervisors and connect VMs
• Traffic is forwarded between VSwitches via tunnels

• Controller knows end hosts macs, and mappings to tunnels

• Controller can use OpenFlow to configure VSwitchs and create

the overlay networks.

Several Tunneling mechanisms

• VXLAN (cisco)
• NVGRE (Microsoft)

• STT (Nicira VMware)

Configuration and Management of Networks

Software Defined Networks – Via Overlay Virtual Networks

• VXLAN (cisco)

200 CHAPTER 8 SDN IN THE DATA CENTER

Outer MAC/IP/UDP header

Dest
MAC U
D

PSource
MAC

Source
IP

Dest
IP

Src UDP
Port

Dst UDP
4789

Source/Dest
MAC & IP of switch

tunnel endpoints

VXLAN UDP
Port = 4789

VXLAN header

VXLAN
Net ID

24-bit
Network identifier

Outer payload

Original packet

Dest
MAC

Source
MAC

Payload

Original host dest &
source and payloadDynamically

generated by
hashing

FIG. 8.3

VXLAN packet format.

8.3.2 NETWORK VIRTUALIZATION USING GRE
The NVGRE technology was developed primarily by Microsoft, with other contributors including Intel,
Dell, and Hewlett-Packard. Some of the main characteristics of NVGRE are:

• NVGRE utilizes MAC-in-IP tunneling.
• Each virtual network or overlay is called a virtual layer two network.
• NVGRE virtual networks are identified by a 24 bit Virtual Subnet Identifier, allowing for up to 224

(16 million) networks.
• NVGRE tunnels, like GRE tunnels, are stateless.
• NVGRE packets are unicast between the two NVGRE end points, each running on a switch.

NVGRE utilizes the header format specified by the GRE standard [5,6].

Fig. 8.4 shows the format of an NVGRE packet. The outer header contains the MAC and IP
addresses appropriate for sending a unicast packet to the destination switch, acting as a virtual tunnel
end point, just like VXLAN. Recall that for VXLAN the IP protocol value was UDP. For NVGRE,
the IP protocol value is 0x2F, which means GRE. GRE is a separate and independent IP protocol in

Outer MAC/IP/UDP header

Dest
MAC G

R
ESource

MAC
Source

IP
Dest
IP

Source/dest
MAC & IP of switch

tunnel endpoints

GRE header

Virtual
subset

ID

24-bit
Network identifier

Outer payload

Original packet

Dest
MAC

Source
MAC

Payload

Original host dest &
source and payload

FIG. 8.4

NVGRE packet format.

• NVGRE (Microsoft)

• STT (Nicira VMware)

200 CHAPTER 8 SDN IN THE DATA CENTER

Outer MAC/IP/UDP header

Dest
MAC U

D
PSource

MAC
Source

IP
Dest
IP

Src UDP
Port

Dst UDP
4789

Source/Dest
MAC & IP of switch

tunnel endpoints

VXLAN UDP
Port = 4789

VXLAN header

VXLAN
Net ID

24-bit
Network identifier

Outer payload

Original packet

Dest
MAC

Source
MAC

Payload

Original host dest &
source and payloadDynamically

generated by
hashing

FIG. 8.3

VXLAN packet format.

8.3.2 NETWORK VIRTUALIZATION USING GRE
The NVGRE technology was developed primarily by Microsoft, with other contributors including Intel,
Dell, and Hewlett-Packard. Some of the main characteristics of NVGRE are:

• NVGRE utilizes MAC-in-IP tunneling.
• Each virtual network or overlay is called a virtual layer two network.
• NVGRE virtual networks are identified by a 24 bit Virtual Subnet Identifier, allowing for up to 224

(16 million) networks.
• NVGRE tunnels, like GRE tunnels, are stateless.
• NVGRE packets are unicast between the two NVGRE end points, each running on a switch.

NVGRE utilizes the header format specified by the GRE standard [5,6].

Fig. 8.4 shows the format of an NVGRE packet. The outer header contains the MAC and IP
addresses appropriate for sending a unicast packet to the destination switch, acting as a virtual tunnel
end point, just like VXLAN. Recall that for VXLAN the IP protocol value was UDP. For NVGRE,
the IP protocol value is 0x2F, which means GRE. GRE is a separate and independent IP protocol in

Outer MAC/IP/UDP header

Dest
MAC G

R
ESource

MAC
Source

IP
Dest
IP

Source/dest
MAC & IP of switch

tunnel endpoints

GRE header

Virtual
subset

ID

24-bit
Network identifier

Outer payload

Original packet

Dest
MAC

Source
MAC

Payload

Original host dest &
source and payload

FIG. 8.4

NVGRE packet format.

8.3 TUNNELING TECHNOLOGIES FOR THE DATA CENTER 201

the same class as TCP or UDP. Consequently, as you can see in the diagram, there are no source and
destination TCP or UDP ports. The NVGRE header follows the outer header and contains an NVGRE
Subnet Identifier of 24 bits in length, sufficient for about 16 million networks.

8.3.3 STATELESS TRANSPORT TUNNELING
Stateless Transport Tunneling (STT) is a recent entry into the field of tunneling technologies used for
network virtualization. Its major sponsor was originally Nicira. Some of the main characteristics of
STT are:

• STT utilizes MAC-in-IP tunneling.
• The general idea of a virtual network exists in STT, but is enclosed in a more general identifier

called a Context ID.
• STT context IDs are 64 bits, allowing for a much larger number of virtual networks and a broader

range of service models.
• STT attempts to achieve performance gains over NVGRE and VXLAN by leveraging the TCP

Segmentation Offload (TSO) found in the Network Interface Cards (NICs) of many servers. TSO is
a mechanism implemented on server NICs which allows large packets of data to be sent from the
server to the NIC in a single send request, thus reducing the overhead associated with multiple
smaller requests.

• STT, as the name implies, is stateless.
• STT packets are unicast between tunnel end points, utilizing TCP in the stateless manner

associated with TSO. This means that it does not use the typical TCP windowing scheme, which
requires state for TCP synchronization and flow control.

Fig. 8.5 shows the format of an STT packet. Like the other tunneling protocols discussed here,
the outer header contains the MAC and IP addresses appropriate for sending a unicast packet to the
destination switch, acting as a VTEP. For VXLAN, the IP protocol value was UDP and for NVGRE
the IP protocol value was GRE. For STT, the IP protocol is TCP. The TCP port for STT has yet to be
ratified, but, tentatively, the value 7471 has been used. The STT header follows the outer header and

Outer MAC/IP/UDP header

Dest
MAC T

C
PSource

MAC
Source

IP
Dest
IP

Src UDP
Port

Dst TCP
7471*

Source/dest
MAC & IP of switch

tunnel endpoints

STT TCP
Port = 7471*
*=currently

STT header

Context
ID

64-bit
Context identifier

Outer payload

Original packet

Dest
MAC

Source
MAC

Payload

Original host dest &
source and payload

FIG. 8.5

STT packet format.

Configuration and Management of Networks

Software Defined Networks – Via Overlay Virtual Networks

10.11 Creating Network Virtualization Tunnels 231

that the reader will be able to extend the detailed source code analyis performed for the Blacklist
application in Section 10.4 and apply those learnings to the cases we cover here.

10.11 Creating Network Virtualization Tunnels
As explained in Section 7.3, data center multitenancy, MAC-table overflow, and VLAN exhaustion
are being addressed with new technology making use of tunnels, the most common being the MAC-
in-IP tunnels provided by protocols such as VXLAN, NVGRE, and STT. Figure 10.4 shows a possible
software application design for creating and managing overlay tunnels in such an environment. We see
in the figure the switch, device, and message listeners commonly associated with reactive applications.
This reactive application runs on the controller and listens for IP packets destined for new IP destination
addresses for which no flow entries exist. When the message listener receives such an unmatched packet,
the application’s tunnel manager is consulted to determine which endpoint switch is responsible for this
destination host’s IP address.

The information about the hosts and their tunnel endpoints is maintained by the application in the
associated host and tunnel databases. The information itself can be gathered either outside the domain
of OpenFlow or it could be generated by observing source IP addresses at every switch. Whichever way
this is done, the information needs to be available to the application.

When a request is processed, the tunnel information is retrieved from the database and, if the tunnel
does not already exist, it will be created. Note that there may be other hosts communicating between
these same two switches acting as tunnel endpoints, so there may be a tunnel already in existence. The

Tunnel
DB

 Match: IP, NW_DST=1.1.1.5, Action=Tunnel-23
 Match: IP, NW_DST=1.1.9.2, Action=Tunnel-12
 Match: IP, Action=CONTROLLER

Switch
(Tunnel Endpoint)

 Install IP flow to forward through
appropriate tunnel

Sw
itc

h

D
ev

ic
e

M
es

sa
ge

C
re

at
e

IP
 F

lo
w

Tunnel
Manager

Overlay Application

Listener APIs Response
APIs

Floodlight Controller

 Unmatched IP Destinations

Host
DB

 Who “owns” this destination
 host’s IP address?
 Does tunnel exist from this

 switch to the switch that owns
 the destination host’s IP?
 If not, create the tunnel using

 appropriate mechanism.

Switch
(Tunnel Endpoint)

Host

OpenFlow

 set up tunnel

FIGURE 10.4

Tunnels application design.

5G Networks - Requirements

Configuration and Management of Networks

5 G networks and SDN-NFV

• Service platforms
deployed at clouds in
the core or micro-clouds
at the edge:
o Fog computing (computing

along the network)
o MEC (edge computing e.g. in

base Stations)
• Composed of

generalized Virtual
Functions (VFs) providing
Applications and
Network services

5G Networks - Convergence between computing (Cloud) and
communication systems (Network).ICTON 2017 Tu.D6.2

 2

orchestration process is in charge of the fulfilment of application demands (e.g., virtual network infrastructure
for content delivery) by coordinately provisioning a composite set of service components (i.e., VFs) across
different technological and/or administrative domains and exposing them as a single service instance. On the
other hand, the orchestration is expected to guarantee the adequate service performance during the service
lifecycle in spite of concurrent resource usage among users or service outages. To this purpose, the orchestration
process also relies on monitoring functions to measure the status of the underlying (both physical and virtual)
resources (e.g., load). Indeed, based on feedback from monitoring tools, the orchestration is expected to handle
exceptions or deviations from normal workflows and to adapt provisioned resources to recover from service
degradations or outages [14]. Given the heterogeneity of the infrastructure resources (i.e., cloud, network, IoT)
possibly deployed in different provider domains and given the different functional areas involved (i.e.,
application, service and infrastructure), a stacked although interdependent set of orchestration layers are foreseen
to address context-aware end-to-end service provisioning in 5G scenarios [4]. More specifically:
x Service Orchestration Layer
At this layer, the dynamic composition of service components is addressed according to a specified service graph
specification, i.e., an ordered list of the required VFs types (e.g., firewall, deep packet inspection, data analytics),
stating the invocation flow of service components as well as the Virtual Link requirements connecting VFs (e.g.,
maximum latency and/or minimum bandwidth) while not specifying yet the instances that should actually
provide those VFs or the network data paths underpinning Virtual Links. This specification basically
corresponds to the IETF Service Function Chain and to the ETSI Network Forwarding Graph concepts when
also application service components are considered. This level of orchestration also deals with the adaptation of
the service chaining logic to accommodate changeable user requirements or service contexts (e.g., changes in
user location or preferences) or to recover from service degradation events (e.g., SLA violations) [4]. For
instance, the service graph can be updated with the addition of traffic acceleration VF to address increased
throughput needs of users. A Service-Oriented Architecture (SOA) approach can be used at this layer, especially
to cope with multi-provider environments [11].
x Resource Orchestration Layer
At this layer, for a given chaining logic, the dynamic selection is carried out of (i) VF instances underpinning the
required service components (i.e., VMs running specified software modules) and (ii) network domains and
delivery path end points supporting connectivity between VFs (i.e., Virtual Links end points) to fulfill
a specified request. Such (virtual) resources are selected among available candidates and their activation
(i.e., service on-boarding) is triggered while leveraging lifecycle management systems or infrastructure
orchestrators. Different algorithms can be used to perform selections while optimizing a specified utility function
(e.g., minimization of the latency experienced by traffic flows). Such algorithms can consider the available
capabilities in the clouds (e.g., processing capabilities at VF instances) and/or link capacities in the network
domains (e.g., throughput at the Virtual Links) as well as their current load deduced from real-time monitoring
data. Moreover, real-time monitoring data can be also used at runtime to adapt selections in case one or more VF
instances are no more available (e.g., due to overload) or data delivery at Virtual Links degrades
(e.g., throughput goes below a given threshold due to hotspots in the network domain). If such adaptation events
are frequent, it means that the available resources (e.g., VF instances) are under-provisioned and scaling actions
need to be carried out [11].
x Infrastructure Orchestration Layer
At this layer and at per-domain level, the delivery of VF services and Virtual Links is carried out through
allocation of VMs into DC servers, service on-boarding into VMs (i.e., configurations and instantiation of VFs
for them to promptly serve the end-users) and/or set-up of data delivery paths across a number of switches to
connect VF instances. Moreover, the monitoring of VMs, servers and switches is performed in a way that if
some hotspot occurs, different or augmented set of capabilities are activated (e.g., delivery path redirection
throughout a different set of switches, VF scaling out). To this purpose, this layer leverages infrastructure
managers related to IoT devices (e.g., ThingSpeak[15]), cloud platforms (e.g., OpenStack[16]) and SDN

Figure 1. 5G network and service scenario. Figure 2. 5G functional layering.

Configuration and Management of Networks

5 G networks and SDN-NFV

• Physical – Compute,
storage, Network (Back-end-
DCs, MEC and Fog; Core
Network and RAN).

• Virtual - Application
functions and Network
functions as virtualized
instances or entities (provide
Services in isolation)

• Value – Top Level
consuming APIs from virtual
layer (With functional service
and operational
requirements)

YOUSAF et al.: NFV AND SDN—KEY TECHNOLOGY ENABLERS FOR 5G NETWORKS 2469

Fig. 1. A 5G system vision [1].

value-added application functions are enabled as virtualized
instances or entities. The top-level consists of heterogeneous
services that shall consume the APIs exposed by the virtual-
ized entities below in order for them to provide their respective
services transparently and in isolation to each other over
a common network platform while meeting their respective
operational and functional service requirements.

B. 5G Slicing Concept & Challenges

The vision of 5G networks discussed above leads to a
very important concept of slicing that has become a cen-
tral theme in 5G networks. Network slicing allows network
operators to open their physical network infrastructure plat-
form to the concurrent deployment of multiple logical self-
contained networks, orchestrated in different ways according
to their specific service requirements; such network slices are
then (temporarily) owned by tenants. As these tenants have
control over multiple layers, i.e. the physical layer, the virtu-
alization layer, and the service layer, of a 5G infrastructure,
they are also called verticals: That is, they integrate the
5G infrastructure vertically. The availability of this vertical
market multiplies the monetization opportunities of the net-
work infrastructure as (i) new players, such as automotive
industry and e-health, may come into play, and (ii) a higher
infrastructure capacity utilization can be achieved by admitting
network slice requests and exploiting multiplexing gains. With
network slicing, different services, such as, automotive, mobile
broadband or haptic Internet, can be provided by different net-
work slice instances. Each of these instances consists of a set
of virtual network functions that run on the same infrastructure
with a tailored orchestration. In this way, very heterogeneous
requirements can be provided on the same infrastructure,
as different network slice instances can be orchestrated and
configured separately according to their specific requirements,
e.g. in terms of network quality-of-service. Additionally, this
is performed in a cost efficient manner as the different network
slice tenants share the same physical infrastructure.

While the network slicing concept has been proposed
recently [2], it has already attracted substantial attention and
several standardization bodies started working on it. 3GPP
has is working on the definition of requirements for network
slicing [3], whereas NGMN identified network sharing among
slices as one of the key 5G issues [4]. A Network Slice
is defined by NGMN as a set of network functions, and
resources to run these network functions, forming a complete

Fig. 2. Network slicing in 5G as envisioned by the NGMN project.

instantiated logical network to meet certain network char-
acteristics required by the service instance(s). According to
NGMN, the concept of network slicing involves three layers
namely (i) service instance layer, (ii) network slice instance
layer, and (iii) resource layer. The service instance layer
represents the end-user and/or business services, provided by
the operator or the 3rd party service providers, which are
supported by the network slice instance layer. The network
slice instance layer is in turn supported by the resource layer,
which may consist of physical resources such as compute,
network, memory, storage etc, or it may be more compre-
hensive as being a network infrastructure, or it may be more
complex as network functions. Fig. 2 depicts this concept
where the resources at the resource layers are dimensioned
to create several subnetwork instances, and network slice
instances are formed that may use none, one or multiple sub-
network instances.

The 5G mobile network system is thus going to be multi-
tiered and slices need to be deployed and managed at each
level resulting in not only a complex architecture, but posing
enormous challenges in terms of 5G network sliced infrastruc-
ture and traffic management. In this regard some of the
principal key are:

1) Seamless and flexible management of physical and vir-
tualized resources across the three tiers.

2) Agile end-to-end service orchestration for each respec-
tive service vertical, where each vertical may have
multiple service instances.

3) Enabling end-to-end connectivity services to each ser-
vice instance, which is also programmable.

In consideration of the above challenges, two key technolo-
gies are being developed in order to cater scalability, flexibility,
agility, and programming requirements of 5G mobile net-
works: Network Function Virtualization (NFV) and Software
Defined Networking (SDN). The inherent potential and recent
advances in the area of NFV and SDN have made them being
recognized as key technological enablers for the realization of
a carrier cloud, which is a key component of the 5G system.
NFV is being designed and developed specifically in terms

Configuration and Management of Networks

5 G networks and NFV

Configuration and Management of Networks

5 G networks and NFV

Software network technologies in 5G architecture. A indicates RAN; B = transport networks; C = core networks
and D represents the Internet.

• 5G Slicing Concept:

o Multiple logical self-contained
networks, orchestrated in different ways
according to their specific service
requirements.

o Temporarily owned by Tenants (A slice
includes Physical, Virtualization and
Service Layer – also called a Vertical)

o Set of virtual network functions that run
on the same infrastructure with a
tailored orchestration.

YOUSAF et al.: NFV AND SDN—KEY TECHNOLOGY ENABLERS FOR 5G NETWORKS 2469

Fig. 1. A 5G system vision [1].

value-added application functions are enabled as virtualized
instances or entities. The top-level consists of heterogeneous
services that shall consume the APIs exposed by the virtual-
ized entities below in order for them to provide their respective
services transparently and in isolation to each other over
a common network platform while meeting their respective
operational and functional service requirements.

B. 5G Slicing Concept & Challenges

The vision of 5G networks discussed above leads to a
very important concept of slicing that has become a cen-
tral theme in 5G networks. Network slicing allows network
operators to open their physical network infrastructure plat-
form to the concurrent deployment of multiple logical self-
contained networks, orchestrated in different ways according
to their specific service requirements; such network slices are
then (temporarily) owned by tenants. As these tenants have
control over multiple layers, i.e. the physical layer, the virtu-
alization layer, and the service layer, of a 5G infrastructure,
they are also called verticals: That is, they integrate the
5G infrastructure vertically. The availability of this vertical
market multiplies the monetization opportunities of the net-
work infrastructure as (i) new players, such as automotive
industry and e-health, may come into play, and (ii) a higher
infrastructure capacity utilization can be achieved by admitting
network slice requests and exploiting multiplexing gains. With
network slicing, different services, such as, automotive, mobile
broadband or haptic Internet, can be provided by different net-
work slice instances. Each of these instances consists of a set
of virtual network functions that run on the same infrastructure
with a tailored orchestration. In this way, very heterogeneous
requirements can be provided on the same infrastructure,
as different network slice instances can be orchestrated and
configured separately according to their specific requirements,
e.g. in terms of network quality-of-service. Additionally, this
is performed in a cost efficient manner as the different network
slice tenants share the same physical infrastructure.

While the network slicing concept has been proposed
recently [2], it has already attracted substantial attention and
several standardization bodies started working on it. 3GPP
has is working on the definition of requirements for network
slicing [3], whereas NGMN identified network sharing among
slices as one of the key 5G issues [4]. A Network Slice
is defined by NGMN as a set of network functions, and
resources to run these network functions, forming a complete

Fig. 2. Network slicing in 5G as envisioned by the NGMN project.

instantiated logical network to meet certain network char-
acteristics required by the service instance(s). According to
NGMN, the concept of network slicing involves three layers
namely (i) service instance layer, (ii) network slice instance
layer, and (iii) resource layer. The service instance layer
represents the end-user and/or business services, provided by
the operator or the 3rd party service providers, which are
supported by the network slice instance layer. The network
slice instance layer is in turn supported by the resource layer,
which may consist of physical resources such as compute,
network, memory, storage etc, or it may be more compre-
hensive as being a network infrastructure, or it may be more
complex as network functions. Fig. 2 depicts this concept
where the resources at the resource layers are dimensioned
to create several subnetwork instances, and network slice
instances are formed that may use none, one or multiple sub-
network instances.

The 5G mobile network system is thus going to be multi-
tiered and slices need to be deployed and managed at each
level resulting in not only a complex architecture, but posing
enormous challenges in terms of 5G network sliced infrastruc-
ture and traffic management. In this regard some of the
principal key are:

1) Seamless and flexible management of physical and vir-
tualized resources across the three tiers.

2) Agile end-to-end service orchestration for each respec-
tive service vertical, where each vertical may have
multiple service instances.

3) Enabling end-to-end connectivity services to each ser-
vice instance, which is also programmable.

In consideration of the above challenges, two key technolo-
gies are being developed in order to cater scalability, flexibility,
agility, and programming requirements of 5G mobile net-
works: Network Function Virtualization (NFV) and Software
Defined Networking (SDN). The inherent potential and recent
advances in the area of NFV and SDN have made them being
recognized as key technological enablers for the realization of
a carrier cloud, which is a key component of the 5G system.
NFV is being designed and developed specifically in terms

Configuration and Management of Networks

5 G networks and NFV

Challenges:
• Seamless and flexible management of physical and

virtualized resources across the three tiers.
• Agile end-to-end service orchestration for each respective

service vertical, where each vertical may have multiple
service instances.

• Enabling end-to-end connectivity services to each service
instance, which is also programmable.

SDN and NFV –Key technologies:
• NFV - Virtualized Services (Cloud)

• Flexibility, Agility and Scalability.

• SDN – Programmable connectivity
• Dynamic steering of traffic.

Configuration and Management of Networks

5 G networks and NFV

NFV – Virtualizing classic Network functions (e.g. routers, firewalls,
DPI, Load balancers and Evolved Packet Core nodes)

What is Network Functions Virtualization (NFV)?
it is the ability to provide network functions on industry standard platforms

Evolution of IT virtualization
techniques for core network
functions
• Use standard servers and storage
• Reduced equipment costs
• Faster time to market
• Resource sharing
• Targeted service introduction
Implement network functions in SW
• It can be moved to, or instantiated in,

various locations in the network
as required, without the need
to install new equipment!

Classic network
appliance approach

Message
router

CDN Session
border

controller

WAN
acceleration

DPI Firewall

Carrier-
grade NAT

Tester/QoE
monitor

SGSN/
GGSN

PE
router

BRAS Radio access
network
nodes

• Fragmented non-commodity hardware
• Physical install per appliance per site
• Hardware development large barrier

to entry for new vendors, constraining
innovation and competition

Network virtualization approach

Standard high-volume Ethernet switches

Standard high-volume storage

Standard high-volume servers

Software
vendors

Virtual appliances

Orchestrated, automatic, and remote install

Software Vendors

Virtual Appliances

Configuration and Management of Networks

Network Function Virtualization (NFV)

High Level NFV framework

Configuration and Management of Networks

Network Function Virtualization (NFV)

• NFV Management And Orchestration (MANO)ETSI NFV Reference Architecture Framework

11

OSS/BSS

Service, VNF
and

Infrastructure
DescriptionEMS 1 EMS 2 EMS 3

VNF 1 VNF 2 VNF 3

Virtual
Computing

Virtual
Storage

Virtual
Network

Computing
Hardware

Storage
Hardware

Network
Hardware

NFVI

Virtualization Layer

Hardware resources

Vi-Ha

Execution reference points Other reference points Main NFV reference points

Orchestrator

OrchestratorOrchestratorVFN
Manager(s)

Virtualized
Infrastructure
Manager(s)

Nf-Vi

Ve-Vnfm

Os-Ma

Or-Vnfm

Vi-Vnfm

Or-Vi

NFV Management and
Orchestration

Vn-Nf

Private | Confidential | Internal Use Only

3 key components:

NFVI : Network
Function Virtualization
Infrastructure
MANO : Management
and Orchestration
VNF : Virtual Network
Functions

• Network Function
Virtualization Orchestrator
(NFVO).

• Manages network services.
On-boarding of network
service descriptions.

• Virtual Network Function
Manager (VFNM).

• Life-cycle of a VNF.
Connects to VNFs or their
Element Managers

Configuration and Management of Networks

NFV - MANO

• NFV Management And Orchestration (MANO)ETSI NFV Reference Architecture Framework

11

OSS/BSS

Service, VNF
and

Infrastructure
DescriptionEMS 1 EMS 2 EMS 3

VNF 1 VNF 2 VNF 3

Virtual
Computing

Virtual
Storage

Virtual
Network

Computing
Hardware

Storage
Hardware

Network
Hardware

NFVI

Virtualization Layer

Hardware resources

Vi-Ha

Execution reference points Other reference points Main NFV reference points

Orchestrator

OrchestratorOrchestratorVFN
Manager(s)

Virtualized
Infrastructure
Manager(s)

Nf-Vi

Ve-Vnfm

Os-Ma

Or-Vnfm

Vi-Vnfm

Or-Vi

NFV Management and
Orchestration

Vn-Nf

Private | Confidential | Internal Use Only

3 key components:

NFVI : Network
Function Virtualization
Infrastructure
MANO : Management
and Orchestration
VNF : Virtual Network
Functions

• Virtualized Infrastructure
Manager (VIM)

• VNF management at VM
and container level

• Providing connectivity
between the various VNFs of
a network service

Configuration and Management of Networks

NFV - MANO

InteractionYOUSAF et al.: NFV AND SDN—KEY TECHNOLOGY ENABLERS FOR 5G NETWORKS 2475

Fig. 6. Different views of chains of command in the Cloud/DC/IT
world (left) and the telecommunication world (right). A joint view is shown
in the middle, offering a way forward. (VMM: virtual machine management,
NC: network controller).

suitable servers and spin up the virtual machines according
to the request. Then it will instruct a network controller
component to provide connectivity between the instantiated
virtual machines.

Contrary on the right side we show the typical telco view.
Telcos main piece of infrastructure is the network which
is controlled by the NC. Operation and business support
systems are responsible for offering a unified central point for
admins and customers to provision and monitor their services
which mainly consist of providing connectivity typically with
service level agreements. In these NFV times, several of
the more complex network elements, which were previously
managed by the network controller are now deployed as virtual
machines. Thus the network controller will instruct the virtual
machine management to instantiate a VNF.

To summarize, in both cases the network controller or the
virtual machine manager are just seen to provide a service
to the other. In order to bring these two worlds together
we need to put them on the same level and integrate them
further. This is shown in the middle and already implemented
in SONATA. The virtual machine manager and the network
controller will become components of a single infrastructure
resource controller. This is already supported by the ONF SDN
architecture [28], when assuming that the infrastructure can
include compute and storage resources beyond the typically
discussed network resources.

In order to fully utilize such a combined service controller,
we need to start developing holistic service descriptions for
Internet applications, that include all its components, sup-
ported deployment topology, hints on how to scale, require-
ments on network path properties, desired network functions,
as well as easy to program interfaces that abstract away
unnecessary complexity from the developer.

As described in the previous section, ONF takes a much
broader view of network systems, and thus the broad definition
of SDN that has developed over time within the ONF can be
translated into many different ways in terms of specifications
and implementations. ETSI NFV, on the other hand, provides a
very precise architectural framework for a very clear purpose,
and that is to manage and orchestrate NFV Infrastructure
resources, typically located in data centers, that are utilized
and consumed by telco related functions and services. In this
context ETSI NFV specifies features and functions it requires
from SDN. They then look into various possibilities of posi-
tioning SDN in the larger scope of NFV. From this perspective,
the ETSI NFV system as per today’s requirements uses the
services of SDN to provide a programmable platform for

Fig. 7. ETSI NFV perspective of interacing with the SDN domain [29].

Fig. 8. Possible options of positioning SDN Resources, SDN controller and
SDN Applications in NFV architectural framework.

establishing links between VNFs and VNF components, and to
support enhanced functions such as policy based management
of traffic between VNFs, or dynamic bandwidth management.
Thus the NFV system realizes a fully programmable end-to-
end network services within the NFV domain.

When integrating the SDN functional components within
the NFV infrastructure, it must take into consideration the
SDN interfaces relevant for its requirements. Figure 7 gives
a high level overview depicting ETSI NFV perspective on
interfacing with the SDN domain [29]. As shown, ETSI NFV
is in the process of specifying the orchestration interface(s) for
interfacing the SDN controller with the NFV MANO system.
These specifications take the interfaces internal to the SDN
domain into account. That is, the Application Control Inter-
face that provides to the VNFs an application programmatic
control of abstracted network resources [29], and the Resource
Control Interface for controlling the NFV Infrastructure net-
work resources (e.g, physical/virtual routers and switches, and
networks connecting VNFs).

In this context, ETSI NFV has published a detailed
report [29] describing the various possible options of SDN
federation in NFV. Figure 8 summarizes these possible options
of integrating SDN application, SDN resources and SDN
controller with different entities within the NFV MANO and

Possible SDN positioning

Configuration and Management of Networks

NFV & SDN

Infrastructure SDN Controller : Provides the required
connectivity with the VNFs as managed by the VIM to support
the deployment and connectivity of VNFs.

Tenant SDN Controler: provides an overlay comprising tenant
VNFs that define the network service(s).

Possible SDN positioning

Configuration and Management of Networks

NFV & SDN

The VNF placement and Service Function Chaining problems

230 B. Yi et al. / Computer Networks 133 (2018) 212–262

Fig. 8. The use case of NFVI as a service.

Fig. 9. The use case of VNF forwarding graph.
the second data center and the third data center offer the same
VNF (i.e., VNF-A).
Traditionally, the network traffic must follow a defined path to
deliver specific services, along which the proprietary network
functions are already deployed. A very simple example of net-
work service may happen on one bidirectional point to point
link. However, we must be aware that the service delivery in
virtualized network environment is much more complex. Like-
wise, in Fig. 9 , the network functions supported by the four
data centers are abstracted in the form of VNFs, with the inter-

connection among them remained. In particular, all these ab-
stracted VNFs constitute to the graph which is referred to as
VNF Forwarding Graph (VNF FG) [172] . Thus, VNF FG can be
regarded as an analogue of physical network forwarding graph
that connects physical appliances via bidirectional cables, which
actually connects VNFs via virtual links for the purpose of de-
scribing the traffic among these VNFs. In particular, connect-
ing multiple VNFs in sequence can constitute a service which
is referred to as SFC in the context of NFV. However, to de-
ploy and implement this SFC, we first need to determine the

Configuration and Management of Networks

Example
2476 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 35, NO. 11, NOVEMBER 2017

NFV architecture. Each one has its own requirements on the
NFV MANO interfaces. For example, there are five integration
options for SDN controller to either (i) be part of OSS/BSS,
(ii) exist as an entity within the NFV Infrastructure, (iii) exist
as a Physical Network Function, (iv) be instantiated as a
VNF, or (v) be integrated within the Virtual Infrastructure
Manager. The latter approach is supported by the ONF SDN
architecture [28] and is also adopted by open source OPNFV
platform [30], where SDN controllers like ODL and ONOS are
integrated with OpenStack, the latter being widely accepted as
a suitable virtual machine management platform. The goal of
OPNFV project is to provide a carrier grade integrated open
source reference platform for NFV. In other words, it is an
ongoing project attempting the marriage between NFV and
SDN. There are also some prominent research projects like 5G
NORMA [31] that leverages on the SDN and NFV concepts in
order to develop a novel mobile network architecture that shall
provide the necessary adaptability in a resource efficient way
able to handle fluctuations in traffic demand resulting from
heterogeneous and dynamically changing service portfolios
and to changing local context. From the NFV perspective
5G NORMA extends the NFV MANO framework to support
multi-tenancy and manage service slices that may be extended
over multiple sites. From the SDN perspective, it defines
two SDN-based controllers, one for the management of net-
work functions local to a mobile network service slice, and
the second for the management of network functions that are
common/shared between mobile network service slices [32].
These controllers leverages on the concept of SDN controller
and translate decisions of the control applications into com-
mands to VNFs. 5G NORMA recommends these special SDN
controllers to be deployed as VNFs.

Thus, Figure 8 gives different options of integrating the
SDN system (application, resources and controller) in the
context of NFV and [29] provides an overview of each option
and its combination. The key point is that NFV aims at
leveraging the programability feature of SDN in order to
implement network services that may be designed according
to some pre-configured VNF Forwarding Graph, or implement
NS that may require the chaining of VNFs based on some
policy/service or even based on VNF processing, for example,
a security related VNF may want to change the path of traffic
on the fly depending on its processing output.

ETSI MANO in [8] provides clear insight as to how
it can utilize the features of SDN for its respective pur-
poses. Figure 9 gives a useful overview with reference to
a multi-site scenario where two network services involving
two virtual (i.e., VNF1 and VNF2) and two physical network
functions (i.e., PNF1 and PNF2) are extended over two NFV
Infrastructure Points-of-Presence (PoP). Each NFVI-PoP has
its own VIM while a WAN Infrastructure Manager (WIM) is
also required for requesting connectivity services between the
two NFVI-PoPs over the WAN. Multiple connectivity services
are requested by the NFV Orchestrator over the Or-Vi interface
from the respective VIMs/WIMs for establishing connectivity
within their respective domains. Each VIM/WIM can request
for the provisioning of virtual networks from the Network
Controller (NC) over a fully open and programmable Nf-Vi
interface. The NC, which for all practical purposes can be an
SDN controller and will be referred to as such. This SDN

Fig. 9. NFV SDN in a multi-site scenario.

controller has visibility into the devices (i.e, SDN resources)
that they control directly and thus is able to provide an
abstracted view of them to the VIM/WIM via the Nf-Vi north-
bound interface. It should be noted that the SDN applications
can also reside inside VIM (see Figure 8). The SDN controller
then establishes the connectivity services by configuring the
forwarding tables of the underlying VNFs/PNFs. Although
shown as a separate functional entity, the SDN controller can
also be part of VIM/WIM as discussed above (see Figure 8).
At the time of writing this paper, the Infrastructure and
Architecture (IFA) working group of the ETSI ISG for NFV
is specifying use cases for multi-site connectivity in order to
draw more concrete requirements for the Northbound inter-
face (i.e., Nf-Vi) of the SDN controller in order to achieve a
happy successful marriage between NFV and SDN.

V. CONCLUSION

Communication networks are currently undergoing a major
evolutionary change in order to be capable to flexibly serve
the needs and requirements of massive numbers of connected
users and devices and to enable the functioning of the new
set of envisioned applications and services in an agile and
programmable way. Key terms in that context are Internet-of-
things, virtualization, softwarization and cloud-native.

In order to be able to maintain and run these networks
over 5G slices, NFV and SDN technologies are widely con-
sidered as the key enablers in network architecture, design,
operation and management. Several organizations (ETSI NFV,
ONF, ETSI MEC, NGMN, 3GPP, IEEE, BBF, MEF etc.)
are working on standardizing the architecture frameworks and
interfaces required for combining the multitude of components
into a functional system that can be implemented within
the provider/operator systems based on a variety of business
models and use cases.

In parallel to standardization activities, several compo-
nents are being developed under the umbrella of open-source
projects (OpenStack, OPNFV, OSM, ONAP, ODL, ONOS,
etc.) that are expected to complement, if not replace, commer-
cial vendors’ products. Moreover, these open-source projects
and relevant standardization bodies are also mutually influ-
encing each other towards the development of their respective
goals, and validating and progressing their respective work.

Configuration and Management of Networks

NFV & SDN

