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This section considers the performance evaluation of digital communication systems 

employing signals in the PAM format where each symbol can take one of M values, 

which are selected from the data bits to be transmitted according to a given mapping 

rule. We focus on the receiver design and the computation of the corresponding BER 

(Bit Error Rate) performance for base-band signals. The analysis can be extended for 

bandpass signals by taking advantage of the base-band equivalent of a given digital 

modulation. This extension will be done in the future.   

Let us consider the PAM signal  

( ) ( )k
k

x t a r t kT  . 

where r(t) is the pulse shape and ka  is the amplitude related to the value of the 

symbol k. For an M-PAM signal, each ka can take one of M possible values and 

corresponds to the transmission of 2log ( )M  bits. For instance, for polar binary 

signals, ka  can take the values –A or A for bits 0 or 1, respectively, and for polar 

quaternary signals ka  can take the values -3A, -A, A and 3A for the dibits 01, 00, 10, 

11, respectively.  

The pulse shape associated to the kth symbol is 

( )ka r t kT  

and the corresponding energy of a modulated pulse shape is 

2 2 2 2
( ) ( )k k k k rE a r t kT dt a r t dt a E

 

 

      

where  

2
( )rE r t dt





   

denotes the energy of the basic pulse shape r(t). This means that the average symbol 

energy is 

2

s kE a  

The average bit energy is 

2

2 2log ( ) log ( )
k rs

b

a EE
E

M M
   

It can be shown that  

x
b x b

b

P
E PT

R
   
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where xP  denotes the average power of the signal x(t), bR denotes the bit rate and   

2

1

log ( )b
b

T
T

M R
   

denotes the bit duration, It should be noted that the bit duration, Tb, is not the pulse 
duration, T, not even in the binary case (for RZ signals the pulse duration is smaller 
than T and for Nyquist, raised cosine pulses the pulse duration is infinity, not Tb).  
 

If we assume an ideal channel, the received signal will be 

( ) ( ) ( ) ( ) ( )k
k

z t x t w t a r t nT w t     , 

where w(t) denotes the noise term, which is assumed to be AWGN (Additive White 

Gaussian Noise). An AWGN noise has the following  PSD (Power Spectral Density)  

0( )
2w

N
S f   

whose average value is 0 (there is no spectral line at frequency 0) and its power is   

( )w wP S f df




   . 

Clearly, the transmission of a finite-power signal x(t) with infinite power noise is not 

possible, since the corresponding SNR (Signal to Noise Ratio) is 

0x
Channel

w

P
SNR

P
  . 

However, most of the power of the useful signal is concentrated in a limited band, 

while the power of the AWGN noise is evenly spread over all frequencies. This means 

that we can reduce the power of the noise by filtering it. If this filtering is done 

appropriately, the power of the signal term is not severely affected.  

Let us consider a detection filter with impulse response h(t) and frequency response 

H(f). The signal at the output of the detection filter will be 

( ) ( )* ( ) ( )* ( ) ( )* ( ) ( ) ( )q t z t h t x t h t w t h t y t n t      

Clearly, the useful signal at the filter’s output still has the PAM format, and will be 

given by 

( ) ( )k
k

y t a p t nT   

where the new pulse shape will be given by 

( ) ( )* ( )p t r t h t  

Regarding the noise term at the filter’s output, it has the PSD  
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2 20( ) ( ) | ( ) | | ( ) |
2n w

N
S f S f H f H f   

and the corresponding power is  

2 20 0( ) ( ) ( )
2 2n n

N N
P S f df H f df h t dt

  

  

     . 

If the filter has a very narrow band then Pn can be made arbitrarily small, but the 

signal term will also vanish. On the other hand, if the filter’s band is large we can 

maintain the useful signal unchanged, but we will end up with a scenario similar to 

the original, unfiltered case. Clearly, there will be an optimum filter somewhere in-

between. It can be shown that the optimum filter that maximizes the SNR at its output 

is the so-called matched filter, which has impulse response 

*
0( ) ( )h t K r t t  , 

where K is a scaling factor that does not affect the SNR (it affects equally the signal 

and noise terms) and t0 is a delay, that is only required to make the filter causal. If the 

pulse shape r(t) is real, we can assume without loss of generally that  

*( ) ( ) ( ) ( )h t r t H f R f    , 

i.e., the matched filter is simply a reflected version of the pulse shape r(t). In this case, 

the pulse shape at the detection filter output becomes 

2 2
( ) ( )* ( ) ( ) ( ) ( )p t r t r t P f R f H f     . 

Regarding the noise, we have 

2 0( ) ( ) | ( ) | ( )
2n w

N
S f S f H f P f  , 

the autocorrelation of the noise samples is  

0( ) ( )
2n

N
R p   

And its power is 

0 0( ) ( ) (0)
2 2n n

N N
P S f df P f df p

 

 

    . 

To obtain the estimates of the transmitted symbols (and bits), the signal at the output 

of the detection filter will be sampled at the sampling instants  

0kt t kT kT    

(assuming that t0=0), leading to the samples qk 

( ) ( ) ( )k k kq q kT y kT n kT y n      

The sampled signal is 
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0
Useful term

ISI term

( ) ( ) ( ) (0) ( )k m k m k k m
m m m

y y kT a p kT mT a p mT a p a p mT 


       


 

and the sampled noise will still be Gaussian (a linear filter does not change the 

Gaussian nature of the input signal), with mean 0 (we still do not have a spectral line 

in Sn(f)) and with variance 

2 22 0 0( ) ( ) ( ) (0)
2 2k n n

N N
E n E n t P S f df P f df p

 

 

              . 

Moreover, the correlation between noise samples nk and nk’ is 

0(( ')) (( ') )
2n

N
R k k p k k T   . 

From the Gaussian nature of the noise, we can define the noise’s probability density 

function 

2

2

1
( ) exp

22
k

k

n
p n




 
  

 
 

and the probability that the noise is above a given value is 

2

2

2( ) ( )/

1
Prob.( ) ( ) exp

22

1
exp Prob.

22

D D

k

a bD
k

n D p d d

nD D
d Q



  


 
  

 



 
     

 
             

    

 


 

where (a) results from a change of variables in the integral and (b) takes advantage of 

the definition of the Q() function 

21
( ) exp

22

x
Q x d

 


 
  

 
 . 

In statistics, the Q-function is the tail distribution function of the standard normal 

distribution (i.e., a Gaussian distribution with zero mean and variance one). In other 

words, Q(x) is the probability that a normal (Gaussian) random variable will obtain a 

value larger than x standard deviations. Equivalently, Q(x) is the probability that a 

standard normal random variable takes a value larger than x. This function does not 

have a closed form and usually is obtained from tables or graphs like the one in the 

figure. 
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If we use a linear scale (instead of the semi-logarithmic one as in the figure above) the 

graph of the Q(x) function would look like the one represented in the following figure 

(not so relevant to obtain the values we want). 

 

For the case where we do not have ISI (i.e., when we employ Nyquist pulses like the 

raised cosine pulses), we have 

( ) 0, 0p kT k  , 

which means that  

(0)k ky a p  
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and, therefore, different noise samples are uncorrelated. This means that we can 

perform the optimum detection of the kth symbol using only the sample qk. 

 

Example: Binary Polar NRZ 

In this case,  

, bit 0

, bit 1k

A
a

A


 


 

and  

( ) rect( / )r t t T . 

We have 

2

2

0

(0)

2

b s

x

p T

E E A T

P A

N
T 



 





 

The useful term of the signal at the sampling instants takes the values 

, bit 0
(0)

, bit 1k k

AT
y a p

AT


  


 

and we can perform the decision: 

, if 0

, if 0
k

k
k

A q
â

A q

 
  

 

We will have an error in the following cases: 

and 

and 
k k k

k k k

â A a A n AT

â A a A n AT

    
     

 

Both probabilities are given by 

2 2 2

2
0 0

22
Prob( ) Prob( ) b

k k

EAT A T A T
n AT n AT Q Q Q Q

N N 

                              
 

Which means that the average BER (Bit Error Rate) will be  

0

2 b
b

E
P Q

N

 
   

 
 

 

Example: Binary Polar RZ (Duty Cycle 50%) 

In this case,  
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, bit 0

, bit 1k

A
a

A


 


 

and  

( ) rect
/ 2

t
r t

T
   
 

. 

We have 

2

2

0

(0) / 2

/ 2

/ 2

4

b s

x

p T

E E A T

P A

N
T 



 





 

The useful term of the signal at the sampling instants takes the values 

/ 2, bit 0
(0)

/ 2, bit 1k k

AT
y a p

AT


  


 

and we can perform the decision: 

, if 0

, if 0
k

k
k

A q
â

A q

 
  

 

We will have an error in the following cases: 

and / 2

and / 2
k k k

k k k

â A a A n AT

â A a A n AT

    
     

 

Both probabilities are given by 

2 2 2

2
0 0

/ 2
Prob( / 2) Prob( / 2)

2

4

k k

b

AT
n AT n AT Q

EA T A T
Q Q Q

N N





       
 

     
                

 

This means that the average BER will be  

0

2 b
b

E
P Q

N

 
   

 
, 

which is the same of the binary polar NRZ case. 

 

Example: Binary Polar Without ISI (General Case) 

In this case,  

, bit 0

, bit 1k

A
a

A


 

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and the adopted pulse shape is such that we have a Nyquist pulse at the matched filter 

output. This means that  

2 2

2 2 2 2
2

2

20 0 0

( ) ( )* ( ) ( )* ( ) ( ) ( ) ( ) ( ) ( )

( ) 0, 0

( ) ( ) ( ) ( ) ( ) (0)

(0)

( ) ( ) (0)
2 2 2

x x x

b s x

p t r t h t r t r t P f R f H f R f H f

p kT k

A A A A
S f R f P f P S f df P f df p

T T T T

E E PT A p

N N N
H f df P f df p

 

 

 


 

      

 

     

  

  

 

 

. 

The useful term of the signal at the sampling instants takes the values 

(0), bit 0
(0)

(0), bit 1k k

Ap
y a p

Ap


  


 

and we can perform the decision: 

, if 0

, if 0
k

k
k

A q
â

A q

 
  

 

We will have an error in the following cases: 

and (0)

and (0)
k k k

k k k

â A a A n Ap

â A a A n Ap

    

     
 

Both probabilities are given by 

2 2 2

2
0 0

(0)
Prob( (0)) Prob( (0))

2(0) 2 (0)

k k

b

Ap
n Ap n Ap Q

EA p A p
Q Q Q

N N





       
 

     
                

 

This means that the average BER will be  

0

2 b
b

E
P Q

N

 
   

 
, 

which is independent of the adopted pulse shape, provided there is no ISI at the output 

of the matched filter. 

 

Example: Binary Unipolar NRZ 

In this case,  

0, bit 0

, bit 1ka
A


 


 

and  
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( ) rect( / )r t t T . 

We have 

2

2

0

(0)

/ 2

/ 2

2

b s

x

p T

E E A T

P A

N
T 



 





 

The useful term of the signal at the sampling instants takes the values 

0, bit 0
(0)

, bit 1k ky a p
AT


  


 

and we can perform the decision: 

0, if / 2

, if / 2
k

k
k

q AT
â

A q AT


  

 

We will have an error in the following cases: 

and 0 / 2

0and / 2
k k k

k k k

â A a n AT

â a A n AT

   
    

 

Both probabilities are given by 

2 2 2

2
0 0

/ 2
Prob( / 2) Prob( / 2)

/ 2

4

k k

b

AT
n AT n AT Q

EA T A T
Q Q Q

N N





       
 

     
                

 

Which means that the average BER (Bit Error Rate) will be  

0

b
b

E
P Q

N

 
   

 
 

When compared with the binary polar case, we have a degradation of a factor of 2 (or 

3dB). This degradation is due to the fact that the average value of the transmitted 

signal x(t) (i.e., its DC component) is A/2 and has power A2/4, which corresponds to 

half of the power of x(t). This DC component is not used for transmitting any 

information and, therefore, is “wasting” half of the transmitted power, hence the 3dB 

degradation when compared with the polar binary case (where there is no DC 

component and no power is wasted).   

 

Example: Quaternary Polar NRZ 

In this case,  
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3 , dibit 11

, dibit 10

, dibit 00

3 , dibit 01

k

A

A
a

A

A



 


 

and  

( ) rect( / )r t t T . 

We have 

2

2

2

0

(0)

5

5

2 2

5

2

s

s
b

x

p T

E A T

E
E A T

P A

N
T 





 





 

The useful term of the signal at the sampling instants takes the values 

3 , dibit 11

, dibit 10
(0)

, dibit 00

3 , dibit 01

k k

AT

AT
y a p

AT

AT



  


 

and we can perform the decision: 

3 , if 2

, if 0< 2

, if 0> 2

3 , if 2

k

k
k

k

k

A q AT

A q AT
â

A q AT

A q AT


    
  

 

The different thresholds are separated by a distance 2AT and the noise needs to be 

above AT or below –AT to lead to an error at the symbol level (we transmit a symbol 

and detect a different symbol). These probabilities are given by  

2 2 2

2
0 0

42

5
bEAT A T A T

p Q Q Q Q
N N 

                          
. 

The probability of having a symbol error depends on the transmitted symbol: 

 Transmission of ak=3A. We have an error if kn AT  , which has the 

probability p. 

 Transmission of ak=A. We have n error if kn AT   or kn AT . Both have 

probability p, and the joint probability is 2p. 
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 Transmission of ak=-A. We have n error if kn AT   or kn AT . Both have 

probability p, and the joint probability is 2p. 

 Transmission of ak=-3A. We have an error if kn AT , which has the 

probability p. 

By averaging the different cases (which have all probability ¼), we obtain the average 

symbol probability 

0

42 2 3

4 2 5
b

s

Ep p p p
P Q

N

   
    

 
 

If we employ a Gray mapping between the dibits and the symbols, then a symbol error 

is very likely to lead to a single bit error (i.e., we move to an adjacent symbol, that 

differs only in one bit). Therefore, the average BER will be approximately given by  

0

43

2 4 5
s b

b

P E
P Q

N

 
    

 
. 

If we ignore the factor ¾ (which has a minor impact for low BER values), there is a 

degradation relatively to the binary polar case of a factor 5/2=2.5 (about 4dB). This is 

the price that we pay for transmitting with twice the bit rate for the same bandwidth.  

 

 


