

Departamento de
Engenharia Eletrotécnica e de Computadores

Serviços e Aplicações em Redes

2024/ 2025

Mestrado em Engenharia Eletrotécnica
e de Computadores

1st Project:
HTTP server with RESTful API

http://tele1.dee.fct.unl.pt/rit2 Pedro Amaral

2

. PROJECT OVERVIEW	

This project implements a HTTP/HTTPS server that serves static files and provides a
RESTful API for managing group information using MongoDB as the database. The project
follows modern software design patterns and principles to create a maintainable and extensible
codebase and is implemented using TCP sockets in JAVA. The server must handle GET and
POST requests for both static files and REST calls that return dynamic HTML pages and update
database contents. The key requirements are:

• Support for both IPv6 and IPv4
• HTTPS with HTTP redirecting to HTTPS
• HTTP 1.1 compatibility
• Configurable keep-alive connection management
• Dynamic HTML responses using group data in the MongoDB database
• HTTP header interpretation
• Form data processing
• Optional basic HTPP based user authentication

 Section 2 has the basic information about HTTP relevant for this project. Section 3 presents a
description of the project that is given as a starting point and outlines the project implementation.

2. HTTP PROTOCOL INFORMATION
The HTTP protocol defines a request-response interaction between a client and a server,

where the exchanged messages contain readable text. There are three protocol versions: HTTP
1.0, HTTP 1.1, and HTTP 2.0.

The request message from client to server has the following structure (where sp = space and
cr lf = line break). The URL corresponds to a local file name (on a server) or identifies a method
to execute when used as a communication protocol for a REST API.

GET and POST methods have a similar structure. A request can include several optional
header lines. Examples include:

• Date header: date of the access to the server;
• Host header: the accessed server name.
• User-Agent: info on the browser type and operating system used
• Accept header: supported data formats
• Accept-Language: preferred language
• If-Modified-Since and If-None-Match headers: indicate if the file was modified since

the last access,

Method sp URL sp Version cr lf

Header Name : value cr lf

Header Name : value cr lf

cr lf

Contents

Request

Header lines …

3

• Connection: to indicate, in HTTP 1.1 , if the brwoser wants to keep the connection open
• Keep-Alive: for how long the connection should be maintained.
• Content-type: the type of data in the message body
• Content-Length: the number of bytes in the message
• Cookie: session data
• etc.

Then, separating the headers from the optional content there is an empty line (“\r\n”). FORM
values, if they exist are sent in the content of a POST method. An example (GET) request is:

GET /page.html HTTP/1.1
Host: tele1.dee.fct.unl.pt
User-Agent: SAR Proxy Demo
Accept-language: pt-pt;pt
Connection: Keep-Alive

Response messages have a similar structure:

The most important field of the response is the status code, which defines what happened

with the request. Status codes include:

• 200 OK: Success - information returned in message body
• 301 Moved Permanently: Moved to URL contained in ‘Location:’ header field
• 304 Not Modified: File was not modified
• 400 Bad Request: Request not understood by the server
• 403 Forbidden: The requested file cannot be accessed
• 404 Not Found: The requested file does not exist or cannot be accessed
• 501 Not Implemented: Request not supported by the server

Responses can include some headers that are common to requests like Content-Type, Content-
Length, Connection, Date, etc. Other headers are specific to responses and serve to things like
indicating the file's last modification (Last-Modified), the file's hash value (ETag), defining a state
on the client (Set-Cookie), and cache control (Cache-Control in HTTP 1.1 or Pragma in HTTP
1.0). Note that the Content-Type header is mandatory whenever data is returned, indicating the
MIME data type, so the browser knows how to interpret the data. HTML files are encoded in the
“text/html” format, while image files can be encoded in “image/gif” or “image/jpeg”, and for the
purposes of this work, the other data can be sent as “application/octet-stream”. In the case of
HTML files, the Content-Encoding header is also important, with the encoding format. It is
recommended that the "ISO-8859-1" format is ALWAYS used for all text files on the server. An
example server response would be:

Version sp Code sp status cr lf

Nome campo cabeçalho : valor cr lf

Nome campo cabeçalho : valor cr lf

cr lf

Content

Request

Headers …

4

HTTP/1.1 200 OK
Date: Wed, 27 Feb 2012 12:00:00 GMT
Server: Apache/2.2.8 (Fedora)
Last-Modified: Thu, 28 Set 2003 19:00:00 GMT
ETag: “405990-4ac-4478e4405c6c0”
Content-Length: 6821
Connection: close
Content-Type: text/html; charset=ISO-8859-1

… { data html } …

There are differences between HTTP 1.0, HTTP 1.1, and HTTP 2.0 in controlling the TCP

connection. In the first case (1.0), the connection is closed after each request. In the second (1.1),
the header fields (Connection and Keep-Alive) can be used in the request and response to define
whether to keep the TCP connection open and for how long. If both the request and the response
contain a Connection header field with a value other than close, the TCP connection is not
disconnected, and multiple requests can be sent over that connection. If the request includes the
Keep-Alive field, it must be sent in the response. An example of values in a response header
maintaining the connection for 60 seconds would be:

Connection: keep-alive
Keep-Alive: 60

Controlling the TCP connection in HTTP 2.0 will be covered in the theoretical part of the

course and is outside the scope of this project.

2.2 Cookies

In order to have states associated with an HTTP connection (which by design is stateless),
two additional header fields have been defined in a standard external [5] to HTTP. Whenever a
server adds a Set-Cookie field to the message, the browser remembers the value received and
returns it on subsequent requests to the same server. The syntax of this field is:

Set-Cookie: NAME=VALUE; expires=DATE; path=PATH; domain=DOMAIN_NAME; secure

1. NAME=VALUE – Sets the name and value of the cookie. It is the only required field, and

you can use the simplified form "Set-Cookie: VALUE" for an empty name.
2. expires=DATE – sets the expiration date of the cookie. If not set, the cookie disappears

when you close the browser. You can delete a cookie in your browser by sending a date
earlier than the current date.

3. domain=DOMAIN_NAME – Sets the name of the server. The same Web server can
support multiple virtual servers, distinguishing by the value of the Host header field. If not
set, the cookie is sent based on the IP address.

4. path=PATH – Root document from which all requested documents must carry the same
cookie. If not set, the cookie is only sent to the requested page.

5. Secure – if selected, the cookie is only sent for secure connections.

If a server sends the field:

Set-Cookie: CUSTOMER=WILE_E_COYOTE; path=/; expires=Wednesday, 09-Nov-
99 23:12:40 GMT

You will receive in the following requests for all documents below "/":
Cookie: CUSTOMER=WILE_E_COYOTE

5

The server can set multiple cookies in separate Set-Cookie header fields, which are
returned concatenated (separated by ';') in a single Cookie header field on future requests.

2.3 Forms

Forms with HTML 2.0 support data entry fields between <form> and </form> tags. Each
field has a name, type (e.g., Checkboxes, Radio Buttons, Text boxes, Submit buttons), and initial
value. For example:

<form ACTION=”http://tele1.dee.fct.unl.pt/create” method=POST>
Name <input type="text" name =”Finger” size=40></form>

When you use the POST method through a submit button or indirectly through a GET with a
“?” in a URL, the values are sent to the server in a compact format. It concatenates all the form
fields into a string, delimited by ‘&’. Each field is encoded as “name=value”, replacing blank
spaces with ‘+’ and reserved characters with their corresponding hexadecimal value in the format
“%aa” (except for Internet Explorer, which replaces spaces with “%A0”). For instance, the
following set of fields (represented as name=value)

star = Eastwood
cert = 15
movie = Pale Rider

would be encoded in the string "star=Eastwood&cert=15&movie=Pale+Rider". The
equivalent invocation performed with a GET would be:

http://tele1.dee.fct.unl.pt/api/finger?star=Eastwood&cert=15&movie=Pale+Rider

More information on the use of forms can be found on pages 667-670 of the recommended

textbook [4], or on various tutorial pages on the Internet (e.g. [7]).

2.4 Controlo de caching

When a browser receives a file, it usually stores it in a local memory, called a cache. In order
for the file to be saved, it must not have authentication fields or cookies, and it must not be a
dynamic page. HTTP defines several methods to control whether the file is still current. The most
common ones use the "If-Modified-Since" and "If-None-Match" header fields. In the first case, in
the second application, the header with the date of the last modification is added; in the second
case, the header with the digital signature of the file (received in the "ETag" field). If the file is
current, it is answered with the code 304, and with the Date, Server, ETag fields, and the
connection control fields, if any. Otherwise, you should ignore the header field and return the new
file.

Request 1:
GET /somedir/page.html HTTP/1.0
…
Response 1:
HTTP/1.0 200 OK
Last-Modified: Thu, 23 Oct 2002 12:00:00 GMT
ETag:"a4137-7ff-42068cd3"
…
Request 2:
GET /somedir/page.html HTTP/1.0
If-Modified-Since: Thu, 23 Oct 2002 12:00:00 GMT
If-None-Match: "a4137-7ff-42068cd3"

6

…
Response 2:
HTTP/1.0 304 Not Modified
Date: Thu, 23 Oct 2002 12:35:00 GMT

Other methods are to use caching control fields. In HTTP 1.0, the header field "Pragma: no-

cache" can be returned in both requests (do not use cached values as a response) and responses
(do not cache). In HTTP 1.1, the "Cache-control" header field must be used, which can have a
subset of several possible values. The value "no-cache" has the same meaning as before. The
value "no-store" in the request or response means that the response can never be cached. The
value "max-age=n" defines the maximum lifetime of the response, or the maximum time that the
file can be cached to be valid.

3. TCP SOCKETS IN JAVA
The project will be developed using VSCode as the IDE with the Dev Containers extension

to allow code developing in containers and Docker Desktop to run the containers.

3.1. IPv6

The Java language supports IPv6 transparently since Java version 1.4. The InetAddress
class handles both IPv4 and IPv6 addresses. It has the subclasses Inet4Address and
Inet6Address for IPv4 and IPv6 functions, respectively. This architecture lets IPv6 addresses
be supported in other java.net classes as InetAddress parameters are used.

To get the local IPv4 or IPv6 machine address, use the getLocalHost class function.

try {
 InetAddress addr = InetAddress.getLocalHost();
} catch (UnknownHostException e) {
 // tratar excepção
}

The getHostAddress method allows you to get the address in string format. The name
associated with the address can be obtained with the getHostName method.

Similarly, the InetAddress.getByName or InetAddress.getAllByName
methods allow you to obtain the addresses (IPv4 or IPv6) associated with a domain name.

3.2 TCP Sockets

In Java, the interface to TCP sockets is done through two classes: ServerSocket and Socket.

3.2.1 The ServerSocket class

The ServerSocket class defines a server object that can accept multiple connections. When
creating an object, you specify the listening port. The accept() method blocks the object until
a connection is received, that creates a Socket-class object for communication with the
client.

7

The constructors of the ServerSocket class allow you to define the port, the number of new

pending connections that are accepted by the object, and the IP address (the network interface) to
which the connection is made. There is also a fourth constructor, which does not initialize the
port, allowing you to use the setReuseAddress() function, before defining the port with the bind()
function.

// Public Constructors
public ServerSocket(int port) throws IOException;
public ServerSocket(int port, int backlog) throws IOException;
public ServerSocket(int port, int backlog, InetAddress bindAddr) throws
 IOException;
public ServerSocket() throws IOException;

The two main functions allow you to receive calls and terminate the server.
public Socket accept() throws IOException;
public void close() throws IOException;

Other functions allow access to socket parameters and settings:
public InetAddress getInetAddress();
public int getLocalPort();
public synchronized int getSoTimeout() throws IOException;
public synchronized void setSoTimeout(int timeout) throws
 SocketException;

To allow you to communicate with clients and accept new connections in parallel, it is

common to use multiple tasks (thread-type objects) to handle each connection.

3.2.2 The Socket Class

The Socket class defines a talkback object in stream mode. It can be created through a
constructor or from the accept operation. The builder allows you to program clients: you specify
the IP address and port to which you want to connect, and the builder establishes the connection.

Aplicação Servidora

ServerSocket

Socket

Socket

Socket
Aplicação Cliente

Socket

Aplicação Cliente

Socket

Nova ligação

8

public Socket(String host, int port) throws UnknownHostException,
IOException;

public Socket(InetAddress address, int port) throws IOException;
public Socket(String host, int port, InetAddress localAddr,
 int localPort) throws IOException;
public Socket(InetAddress address, int port, InetAddress localAddr,
 int localPort) throws IOException;

The socket write and read operations are performed through java.io packet objects
(InputStream and OutputStream), described in the next section, returned by two functions of the
class. There are also functions to close the socket and to obtain information about the identity of
the connection.

public InputStream getInputStream() throws IOException;
public OutputStream getOutputStream() throws IOException;
public synchronized void close() throws IOException;
public InetAddress getInetAddress();
public InetAddress getLocalAddress();
public int getLocalPort();
public int getPort();
public isConnected();
public isClosed();

Various operations to configure the parameters of the TCP protocol can be performed using
methods of this class. The getReceiveBufferSize, setReceiveBufferSize,
getSendBufferSize, and setSendBufferSize functions allow you to modify the size
of the buffers used in the TCP protocol. The getTCPNoDelay and setTCPNoDelay functions
control the use of Nagle's algorithm (false = off). The getSoLinger and setSoLinger
functions control what happens when the connection is closed: if it is connected, the value defines
the number of seconds that you wait until you try to send the rest of the data that is in the TCP
buffer and has not yet been sent. If it is active, it can lead to data loss that is not detectable by the
application.

public int getReceiveBufferSize() throws SocketException;
public synchronized void setReceiveBufferSize(int size) throws
 SocketException;
public int getSendBufferSize() throws SocketException;
public synchronized void setSendBufferSize(int size) throws
 SocketException;
public boolean getTcpNoDelay() throws SocketException;
public void setTcpNoDelay(boolean on) throws SocketException;
public int getSoLinger() throws SocketException;
public void setSoLinger(boolean on, int val) throws SocketException;
public synchronized int getSoTimeout() throws SocketException;
public synchronized void setSoTimeout (int timeout) throws
 SocketException;

The getSoTimeout and setSoTimeout functions allow you to configure the maximum

amount of time that a read operation can be blocked before it is canceled. If the time expires, a
SocketTimeoutException exception is thrown. These functions also exist for the
ServerSocket and DatagramSocket classes.

3.2.3 Communication on TCP sockets

Socket class objects provide methods to get an object from the InputStream class
(getInputStream) to read from the socket, and to get an object from the OutputStream class

9

(getOutputStream). However, these classes only support writing byte arrays. Thus, it is common
to use other classes in the java.io package to wrap these base classes, obtaining greater flexibility:

To read strings from a socket it is possible to work with:
1. The InputStreamReader class processes the byte string by interpreting it as a character

string (converting the character format).
2. The BufferedReader class stores characters received from a beam of type

InputStreamReader, supporting the readLine() method to wait for the reception of a full
line.

To write strings in a socket it is possible to work with:
1. The OutputStreamWriter class processes the string and encodes it to a sequence of bytes.
2. The PrintWriter class supports the methods of writing strings and variables of other

formats (print and println) for a bundle of type OutputStreamWriter.
3. The PrintStream class supports both the methods of writing strings and byte [] to a beam

of type OutputStream.
If you want to send objects in a binary (non-readable) format, you should use the

DataInputStream and DataOutputStream classes.

An example of using these classes would be the following:
try { // soc representa uma variável do tipo Socket inicializada
 // Cria feixe de leitura
 InputStream ins = soc.getInputStream();
 BufferedReader in = new BufferedReader(
 new InputStreamReader(ins, "8859_1")); // Tipo de caracter
 // Cria feixe de escrita
 OutputStream out = soc.getOutputStream();
 PrintStream pout = new PrintStream(out);
 // Em alternativa poder-se-ia usar PrintWriter:
 // PrintWriter pout = new PrintWriter(
 // new OutputStreamWriter(out, "8859_1"), true);
 // Lê linha e ecoa-a para a saída
 String in_string= in.readln();
 pout.writeln("Recebi: "+ in_string);
}
catch (IOException e) { ... }

3.3 Sockets TLS

In Java, the interface to TLS sockets is performed through the Java Secure Socket Extension
(JSSE) [7], distributed along with JavaSE 1.4.2 and later. For the realization of servers based on
blocking interfaces, this extension provides the SSLServerSocket and SSLSocket classes, with a
similar operation to the ServerSocket and Socket classes presented above. To perform the
management of security contexts, including certificates and public keys, it provides the
SSLContext class, from which it is possible to create socket factories TLS servers
(SSLServerSocketFactory) or clients (SSLSocketFactory). To create an HTTPS-capable TLS
server, you must include an X.509 certificate in the context of the socket server. JSSE provides
tools to create these certificates.

3.3.1 Creating a TLS Context (Already Done in the Provided Project)

The management of TLS contexts is done through objects of the javax.net.ssl.SSLContext
class. The Java platform allows you to define at the start of an application, which is the file with
the certificates with the local keys, loaded for static parameters of the SSLContext class. For

10

example, the following command line loads the certificates from the keystore file, protected with
the password password:

% java -Djavax.net.ssl.keyStore=keystore -Djavax.net.ssl.keyStorePassword=password

 Server;

Using the static getInstance method on the SSLContext class it is possible to create a context
that performs a specific security protocol, which can be "SSL", "SSLv2", "SSLv3", "TLS", and
"TLSv1". The differences between these various protocols lie in the cryptographic methods they
use. In the case of this work we will use TLSv1.2, since the methods used in SSL are no longer
considered secure.

public static SSLContext getInstance(String protocol)

 throws NoSuchAlgorithmException;

public static SSLContext getInstance(String protocol, String provider)

 throws NoSuchAlgorithmException, NoSuchProviderException;

Subsequently, this context must be initialized with the local private keys (KeyManager), and
if necessary to perform TLS clients that authenticate the servers, with the public keys of the servers
(TrustManager). In this second case, it would be necessary to provide the name of the file with
the list of public keys on the command line, with the following argument: -
Djavax.net.ssl.trustStore=MyCacertsFile.

public void init(KeyManager[] km, TrustManager[] tm, SecureRandom random);

To create a TLS server, you will need to initialize the server's local private key table, and
associated X.509 certificates, which will be sent to the client during the secure connection is
established. JSSE provides the java.security.KeyStore class to store cryptographic keys and
certificates, supporting various encryption mechanisms. KeyStore objects are created with the
getInstance method, where the security method used is indicated. By default, the class supports
the native JSSE method (JKS), but there are tools to convert files in other formats to JKS.1

KeyStore ks = KeyStore.getInstance("JKS");

De seguida, é necessário carregar os dados do ficheiro com as chaves privadas e os
certificados, contidos num ficheiro JKS (no exemplo seguinte, com o nome "keyStoreName"):

char[] password = getPassword(); // Pede a password ao utilizador

java.io.FileInputStream fis = new java.io.FileInputStream("keyStoreName");

ks.load(fis, password); // Carrega os dados

fis.close();

O JSSE fornece a classe javax.net.ssl.KeyManagerFactory para suportar a instanciação de
gestores de chaves privadas. Utilizando o método getInstance é possível criar uma fábrica de
gestores associado a um tipo de certificado (geralmente "SunX509"), que posteriormente, é
carregado com os certificados e chaves privadas a partir de um objecto KeyStore com o método
init.

KeyManagerFactory kmf = KeyManagerFactory.getInstance("SunX509");

kmf.init(ksKeys, passphrase); // Inicializa as chaves locais

Finalmente, é possível criar uma instância da interface javax.net.ssl KeyManager utilizando
o método getKeyManagers, e usá-lo para instanciar um contexto TLS. O código seguinte ilustra
um exemplo completo de uma função de inicialização de contexto, guardado na variável pública
sslContext, do tipo SSLContext.

private static void initContext(String keyfilename, String password)

1 e.g. conversão entre OpenSSL ou apache e JKS: http://mark.foster.cc/kb/openssl-keytool.html

11

 throws Exception {

 if (sslContext != null) // Só corre uma vez

 return;

 try {

 // Create/initialize the SSLContext with key material

 char[] passphrase = password.toCharArray();

 KeyStore ksKeys;

 try {

 ksKeys= KeyStore.getInstance("JKS");

 } catch (Exception e) {

 System.out.println("KeyStore.getInstance: "+e);

 return;

 }

 ksKeys.load(new FileInputStream(keyfilename), passphrase);

 System.out.println("KsKeys tem "+ksKeys.size()+" chaves ");

 // Selecciona a utilização de chaves no formato X.509

 KeyManagerFactory kmf = KeyManagerFactory.getInstance("SunX509");

 kmf.init(ksKeys, passphrase); // Inicializa as chaves locais

 // Cria contexto TLS

 sslContext = SSLContext.getInstance("TLSv1.2");

 sslContext.init(kmf.getKeyManagers(), null, null);

 } catch (Exception e) {

 System.out.println("Falhou criacao de contexto.");

 e.printStackTrace();

 throw e;

 }

}

3.3.2 TLS Server Sockets

A TLS socket server is created with an SSL socket factory object, of the
javax.net.ssl.SSLServerSocketFactory class. You can create a factory by default, without local
certificates, using the static method SSLSocketFactory.getDefault(). But when local X.509
certificates need to be managed, a factory should be created by invoking the
getServerSocketFactory() method on top of a previously initialized object of the
javax.net.ssl.SSLContext class.

SSLServerSocketFactory sslSrvFact = sslContext.getServerSocketFactory();

TLS server sockets are created by using a variant of the createServerSocket method, which
has the same parameters as the constructors of the ServerSocket class presented earlier, with the
same meaning.

public SSLServerSocket createServerSocket();

public SSLServerSocket createServerSocket(int port) throws IOException;

public SSLServerSocket createServerSocket(int port, int backlog)

 throws IOException;

public SSLServerSocket createServerSocket (int port, int backlog,

 InetAddress bindAddr) throws IOException;

The javax.net.ssl.SSLServerSocket class inherits from the java.net.ServerSocket class all of

the methods presented in section 3.2, behaving like a normal server socket. Thus, the
programming of an application is carried out in the same way as before. The difference lies in a
set of methods specific to the SSLServerSocket class, which allow you to configure aspects of the
TLS protocol. There are methods to select which encryption protocols can be used. Other methods
control how TLS negotiation is done:

12

// Controla se o cliente tem de se autenticar – isto é enviar o seu certificado para

o servidor. Se não enviar rejeita o estabelecimento de ligação TLS.

public abstract void setNeedClientAuth(boolean flag);

public abstract boolean getNeedClientAuth();

// Controla se o cliente deve se autenticar – neste caso permite a ligação mesmo que

o cliente envie o certificado para o servidor.

public abstract void setWantClientAuth(boolean flag);

public abstract boolean getWantClientAuth();

// Por omissão funciona no modo servidor – o servidor é o primeiro a enviar o

certificado. Num servidor FTP por vezes é necessário inverter a autenticação, mas num

servidor Web não.

public abstract void setUseClientMode(boolean flag);

public abstract boolean getUseClientMode();

On the HTTPS Web server that you are going to perform in this job you must turn off client

authentication.

3.3.3. Datas compatíveis com o protocolo HTTP

The HTTP protocol defines a specific format for writing dates:
Thu, 23 Oct 2002 12:00:00 GMT

You can write and read variables with this format by using an object of the DateFormat class.
DateFormat httpformat=

 new SimpleDateFormat ("EE, d MMM yyyy HH:mm:ss zz", Locale.UK);

httpformat.setTimeZone(TimeZone.getTimeZone("GMT"));

Date writing

out.println("A data actual é " + httpformat.format(dNow));

Reading dates

try {

 Date dNow= httpformat.parse(str);

} catch (ParseException e) {

 System.out.println("Data inválida: " + e + "\n");

}

You can compare dates by using the compareTo method of objects of the Date class. Adding
and subtracting time ranges to dates is also possible by converting the date to long using the
getTime method. Since the value counts the number of milliseconds since 1970, it is enough to
add or subtract the value corresponding to the interval. For example, to move forward one day
would be:

Date d= new Date(dNow.getTime() + (long)24*60*60*1000);

Alternatively, you can use the add function of the Calendar class to perform the operation:
Calendar now= Calendar.getInstance();

now.add(Calendar.DAY_OF_YEAR, +1);

Date d= now.getTime();

4. SPECIFICATIONS
The goal of this work is to program a web server as an exercise to deepen the knowledge of

the HTTP protocol, by implementing a “tailor-made” realization of the protocol supported directly
in the use of TCP sockets. The students will have to implement the treatment of the requests, the
interpretation of the several headers, in order to produce the corresponding responses to the

13

clients. The server is executed in the command line, with the parameters being hardcoded as a set
of constants in the main class (Main.java). Parameters include, among others, the ports for the
normal TCP server and for the TLS server, the directory of the static HTML files to be served,
and the option to request or not a username and password for access.

4.1 Detailed Specification

The HTTP server must be able to support multiple clients in parallel, using individual tasks
to respond to each client. To facilitate development, initial code is provided. The provided server
is functional for simple requests of static files and also already provides the form to maioulate
group information as a response to a GET method for an URL ending in “api”. However the
provided code does not interpret nor send any HTTP heeders and is therefore not properly
adhering to the HTTP standard in its responses to clients.

The project can be opened and run in the Visual Studio Code IDE and contains the definition
of two development containers, one to run the server in Java and the other to run the database.
You should install Docker Desktop on your machine together with VSCode, in VSCode you
should install the Dev Containers extension, so you don't need to have JAVA on your machine
and do not need to install mongodb, because the code will be developed and run inside a container
that contains all the necessary dependencies and can connect to the database container.

The server must receive requests on the HTTP port or HTTPS port. HTTP requests must
ALL be redirected to the HTTPS service. Thus, when a request for a page http://URL1 is received
a redirect response must be sent to the browser with the address https://URL1.

If the boolean Authorization variable is set to true in the main class, HTTP authentication in

basic mode (using the Authorization header) should be used in HTTPS requests, this will only be
necessary if the browser does NOT send a cookie obtained in response to a previous authorization
in the request.

The public final static String StaticFiles = “html” defines the root directory were static files

reside in Web server. URLs in POST methods are treated as API requests and result in dynamic
HTML code produced based on the parameters received in the POST.

The value of the KeepAliveTime variable is only used if you keep a connection open, in
HTTP 1.1. Keep-Alive sets the maximum number of seconds of inactivity until the connection is
disconnected (if it initializes at 0 it means that it does not disconnect if you want to keep the
connection active you must initialize it with the desired value).

14

4.2 Project structure

The Project has the following structure:

project_root/
├── .devcontainer/ # Development container configuration
│ ├── devcontainer.json # VSCode devcontainer settings
│ ├── docker-compose.yml # Docker services (Java + MongoDB)
│ └── Dockerfile # Java development environment
├── proj1/
│ ├── pom.xml # Maven project configuration
│ ├── html/ # Static files directory
│ └── src/
│ ├── main/
│ │ ├── java/com/sar/
│ │ │ ├── config/ # Configuration classes
│ │ │ ├── model/ # Data models
│ │ │ ├── repository/ # Database operations
│ │ │ ├── service/ # Business logic
│ │ │ ├── server/ # Server components
│ │ │ └── web/ # Web handling
│ │ └── resources/ # Configuration files
│ └── test/ # Test files

Below is a brief explanation of the main folders and files in the project. This structure is designed
to keep the codebase organized, encourage separation of concerns, and make development more
maintainable.

• devcontainer/
o devcontainer.json: Configures VSCode devcontainer settings, including

extensions and post-create commands (e.g., Maven installation, log directory
creation).

o docker-compose.yml: Defines how Docker services run together, typically
including a Java container and a MongoDB container.

o Dockerfile: Specifies the Java development environment, including any required
tools (e.g., Maven, MongoDB client).

• proj1/
o pom.xml: The Maven configuration file that manages dependencies, build

settings, and plugins for the project.
o html/: Contains all static files (HTML, CSS, JavaScript, images) that are served

directly by the server without additional processing.
o src/: Holds the core source code and resources for the application.
o main/:

§ java/com/sar/: Main Java package.
§ config/: Configuration classes (e.g., MongoConfig) that set up external

services or environment specifics.
§ model/: Application data models (e.g., Group.java) representing entities

stored in MongoDB.
§ repository/: Data access interfaces and implementations (e.g.,

GroupRepository, MongoGroupRepository) for interacting with
MongoDB.

15

§ service/: Business logic classes (e.g., GroupService, GroupServiceImpl)
that coordinate between the repository layer and the server/application
logic.

§ server/: Core classes responsible for starting and managing the server
(e.g., Main.java, ServerThread, ConnectionThread).

§ web/: HTTP handling logic, including:
• AbstractRequestHandler: Template logic for handling different

HTTP methods.
• ApiHandler: Handles RESTful API requests (GET and POST) and

integrates with the service layer.
• StaticFileHandler: Serves static files from the html directory.
• http/: Classes Request, Response, Headers, and ReplyCode for

parsing/fabricating HTTP messages.
• resources/: Contains any project-specific configuration files (e.g., logback.xml for

logging settings).

This structure allows each part of the application (configuration, data, logic, server, and web
handling) to function independently while still interacting cleanly with the others. It helps
maintain a clear distinction between concerns, ensures scalability for new features, and makes
the project easy to understand for newcomers.

4.5 Testing

The web server must be compatible with any browser, you can use the browser developer
tools to inspect the contents of the request and response headers.

At a minimum, the server should redirect to HTTPS and support normal file (GET) requests
and keeping the connection open whenever the browser tells you to via the Connection
header. You should also read all header fields and interpret at least the following headers
(Connection, Keep-Alive, If-Modified-Since). The server should always return
the Date, Server, Last modified, Content-Type, Content-Length, and
Content-Encoding fields. You should also support the POST method, and receive and store
the POST contents

To aim for a good grade, you should also develop the interaction with the database and return
the pages generated accordingly.

4.6 Development of the work

The work will be developed in six weeks. It is proposed that the following goals be defined
for the realization of the work:
1. Before the first class get the documentation and provided code.
2. By the end the first week: You should have set up your developing environment and be

able to run the provided code.
3. At the end of the second week you should have implemented the reading of the request

headers, the preparation of the relevant headers for responses with static files and the
sending of the response headers trough the socket.

4. By the end of the second week you should have implemented the reuse of connections
with HTTP/1.1, and the redirection to HTTPS.

5. At the end of the third week you should have implemented the validation of the "If-
Modified-Since" header and the processing of the Authorization header when it
is requested.

16

6. At the end of the fourth week you should have completed the API interaction to create
groups in the database and the sending of an authorization cookie that can serve as an
alternative to the Authorization header.

7. By the end of the sixt week, the reading/sending of cookies to control interactions with
the API should be completed and you should do the final tests.

4.7 Students' Posture

Each group should consider the following:

· Program according to the general principles of good coding (use of indentation,
presentation of comments, use of variables with names that conform to their functions...)
and

· Proceed in such a way that the work to be done is equally distributed among the two
members of the group.

