

Electrical Engineering Department

Telecommunication Systems

2012/2013

 Laboratory Work 0:

 Demonstration of the Java environment

 Learning application development

Class 2 – Aplication with datagram sockets

Integrated Master in Electrical Engineering and

Computers

 Luís Bernardo

 Paulo da Fonseca Pinto

i

Índice
1. Objetivo .. 1
2. Segunda Aplicação – Conversa em Rede com UDP .. 1

2.1. ChatUDP básico .. 1
2.1.1. Recepção de dados do socket UDP – classe Daemon_udp .. 3
2.1.2. Classe Chat_udp – inicialização ... 4
2.1.3. Classe Chat_udp – recepção de mensagens .. 5
2.1.4. Classe Chat_udp – envio de mensagens.. 6

2.2. ChatUDP avançado – Exercícios ... 7
2.2.1. Envio de mensagens usando um temporizador ... 7
2.2.2. Memorização da última mensagem dos utilizadores .. 8
2.2.3. Envio de mensagens para todos os computadores na rede .. 9

1

1. OBJECTIVE

Familiarization with the Java programming language and applications

using datagram sockets, developed in the NetBeans environment. The work

consists in the introduction of part of the code following the instructions set out, learning to use

the environment and the set of library classes from the Java language. A project is provided with

the start of the work, which is completed in a set of exercises.

2. SECOND APPLICATION – NETWORK CHAT WITH DATAGRAMS

This section illustrates the development of an application using datagram sockets. The

application supports the exchange of messages in a network, where each participant has a

window which receives messages from other elements (Remote) and a window where you type

your messages (Local). The user selects the IP address and port number of the machine where to

send the messages and can shut down the application.

2.1. BASIC CHATUDP

The first version only supports simple exchange of messages between users, uniquely

identified on the network by the set {endereço IP :

número de porto}. The NetBeans project with this first

part is provided to the students.

As in the example of the previous class, the first

phase starts with opening the project Chat_udp

distributed with the assignment, with the design of the

GUI. In this project we defined the window shown

below, where we used the following components:

 2 objects Button {buttons ‘Clear’ and ‘Send’}

 1 object ToggleButton {button ‘Active’}

 5 objects Text Field {message, IP and local and

remote ports}

 2 objects Text Area {local and remote texto}

 2 objects Scroll Pane {Scroll bars for TextArea}

 3 objects Panel {three lines with groups of

buttons }

2

The name of each graphical object is shown in the figure of the previous page, and the text

of each button is represented above. In order to have the graphical aspect shown on the right, the

following object properties were modified:

 object 'JFrame'

 title= “Chat UDP”;

 Layout=BoxLayout, com Axis= “Y Axis”.

 object 'jPanelLocal'

 Layout=FlowLayout;

 preferredSize= [450,38] e maximumSize= [450,40], limiting the vertical growth.

 object 'jTextLocIP'

 preferredSize= [120,28], fixing the width of the box after “Local: IP”.

 object 'jTextLocPort'

 preferredSize= [60,28], fixing the width of the box after “Local: Port”.

 object 'jButtonClear'

 background= [220,220,100], changing the color to yellow.

 object 'jPanelRemote'

 Layout=FlowLayout;

 preferredSize= [450,38] and maximumSize= [450,40], limiting vertical growth.

 object 'jTextRemIP'

 preferredSize= [120,28], fixing the width of the box after “Remote: IP”.

 object 'jTextRemPort'

 preferredSize= [50,28], fixing the width of the box after “Remote: Port”.

 object 'jPanelMessage'

 Layout=FlowLayout;

 preferredSize= [450,38] and maximumSize= [450,40], limiting vertical growth.

 object 'jTextMessage'

 preferredSize= [200,28], fixing the width of the box after “Message:”.

 object 'jLabelLocal'

 preferredSize= [50,22] and maximumSize= [50,22], limiting vertical growth.

 object 'jScrollPanelLocal'

 preferredSize= [222,87], defining an unlimited maximum to let it grow.

 object 'jTextAreaLocal'

 preferredSize= [220,85], defining an unlimited maximum to let it grow.

 object 'jLabelRemote'

 preferredSize= [64,22] and maximumSize= [64,22], limiting vertical growth.

3

 object 'jScrollPanelRemote'

 preferredSize= [222,87], defining an unlimited maximum to let it grow.

 objeto 'jTextAreaRemote'

 preferredSize= [220,85], defining an unlimited maximum to let it grow.

Thus, if you enlarge the window, only the local and remote text boxes get larger. In addition

to the changes above, the font of the labels was changed to "Arial Bold 15" and the other fonts

for "Arial 15 Plain" in order to adopt a font that exists on Windows, MacOS and Linux, making

the code more portable across platforms.

Then, empty methods for the buttons were created using double click.

To facilitate writing in text boxes "Local" and "Remote" two methods were set up in the

class associated with the window (Chat_udp): Log_loc and Log_rem. The two are

synchronized to ensure that write operations are not interrupted.
public synchronized void Log_loc(String s) {

 try {

 jTextAreaLocal.append(s); // Write to the Local text area

 System.out.print("Local: " + s); // Write to the terminal

 } catch (Exception e) {

 System.err.println("Error in Log_loc: " + e + "\n");

 }

}

public synchronized void Log_rem(String s) {

 try {

 jTextAreaRemote.append(s); // Write to the Remote text area

 System.out.print("Remote: " + s); // Write to the terminal

 } catch (Exception e) {

 System.err.println("Error in Log_rem: " + e + "\n");

 }

}

These text boxes are cleaned in the method that handles the event associated with the button

"Clear":
private void jButtonClearActionPerformed(java.awt.event.ActionEvent evt) {

 jTextAreaLocal.setText("");

 jTextAreaRemote.setText("");

}

2.1.1. Daemon_udp class – Reception of data from UDP socket

The datagram sockets are permanently connected. As message are sent and received

concurrently, in Java there is the need for two concurrent activities:

The main program is already waiting for graphical events to send messages (clicks on

button "Send"). Therefore, you must create an object of class Daemon_udp, of type thread, which

is run concurrently with the main program to receive messages from the socket.

The class code is shown below, containing the constructor (where the values of the class

variables root and ds are initialized), the run method (which contains the code run in this

thread), and stopRunning method, which allows stopping the thread, controlling the Boolean

variable keepRunning. The socket is created in the main class, that creates the graphics window

(Chat_udp), and is passed in the constructor for this class (argument ds) being stored in the

variable with the same name (this identifies the object location) along with the reference to the

Main Thread
Receive messages

from user

Send messages to

network and write them

Thread 2
Receive messages

from socket

Write messages to text

box “Remote”

4

object main (root). The run method is cyclically waiting for messages, invoking the

receive_packet method of class Chat_upd per message received and passing as parameter the

object for reading the message fields (dis). It also deals with the exceptions resulting from

errors in communication.
public class Daemon_udp extends Thread { // inherits from Thread class

 volatile boolean keepRunning = true;

 Chat_udp root; // Main window object

 DatagramSocket ds; // datagram socket

 public Daemon_udp(Chat_udp root, DatagramSocket ds) { // Constructor

 this.root = root;

 this.ds = ds;

 }

 public void run() { // Function run by the thread

 byte[] buf = new byte[Chat_udp.MAX_PLENGTH]; // buffer with maximum message size

 DatagramPacket dp = new DatagramPacket(buf, buf.length);

 try {

 while (keepRunning) {

 try {

 ds.receive(dp); // Wait for packets

 ByteArrayInputStream BAis = new ByteArrayInputStream(buf, 0, dp.getLength());

 DataInputStream dis = new DataInputStream(BAis);

 root.receive_packet(dp, dis); // process packet in Chat_udp object

 } catch (SocketException se) {

 if (keepRunning) {

 root.Log_rem("recv UDP SocketException : " + se + "\n");

 }

 }

 }

 } catch (IOException e) {

 if (keepRunning) {

 root.Log_rem("IO exception receiving data from socket : " + e);

 }

 }

 }

 public void stopRunning() { // Stops loop by turning off keepRunning

 keepRunning = false;

 }

}

2.1.2. Class Chat_udp – initialization

The class Chat_udp is associated with the GUI, and is responsible for conducting all

program logic and for defining of settings: MAX_PLENGTH is a constant (final variable) at the

class level (static variable) with the maximum size for the messages exchanged.
public static final int MAX_PLENGTH = 8096; // Constant - Maximum packet length

Two main variables are used: sock and serv. The variable sock holds the object of type

DatagramSocket used both to send and to receive data; variable serv contains a thread object

of class Daemon_udp that receives messages concurrently. It also defines the auxiliary variable

formatter, to format the writing of dates to "hour:minutes", which is initialized in the

declaration because it does not depend on any external value.
// Variables declaration

private DatagramSocket sock; // datagram socket

private Daemon_udp serv; // thread for message reception

private java.text.SimpleDateFormat formatter = // Formatter for dates

 new java.text.SimpleDateFormat("hh:mm:ss");

The initial value of the variables is defined in the class constructor (method Chat_udp). In

addition, the constructor fills the text boxes with IP addresses with the local address, and sets the

value of the local port to 20000 by default.

5

public Chat_udp() {

 initComponents(); // defined by NetBeans, creates the graphical window

 sock = null; // Set null value – meaning “not initialized”

 serv = null; // Set null value – meaning “not initialized”

 try {

 // Get local IP and set port to 0

 InetAddress addr = InetAddress.getLocalHost(); // Get the local IP address

 jTextLocIP.setText(addr.getHostAddress()); // Set the IP text fields to

 jTextRemIP.setText(addr.getHostAddress()); // the local address

 } catch (UnknownHostException e) {

 System.err.println("Unable to determine local IP address: " + e);

 System.exit(-1); // Closes the application

 }

 jTextLocPort.setText("20000");

}

The application startup is controlled in the method that handles the toggle button "Active".

When the button is activated, the function reads the local port number, creates the socket, and

creates and starts a thread that receives data from the socket, pre-filling the number of local and

remote port. On error, it turns off the button back to its initial state. When the button is disabled,

the function stops the thread and closes the socket.
private void jToggleButtonActiveActionPerformed(java.awt.event.ActionEvent evt)

 if (jToggleButtonActive.isSelected()) { // The button is ON

 int port;

 try { // Read the port number in Local Port text field

 port = Integer.parseInt(jTextLocPort.getText());

 } catch (NumberFormatException e) {

 Log_loc("Invalid local port number: " + e + "\n");

 jToggleButtonActive.setSelected(false); // Set the button off

 return;

 }

 try {

 sock = new DatagramSocket(port); // Create UDP socket

 jTextLocPort.setText("" + sock.getLocalPort());

 jTextRemPort.setText("" + sock.getLocalPort());

 serv = new Daemon_udp(this, sock); // Create the receiver thread

 serv.start(); // Start the receiver thread

 Log_loc("Chat_udp active\n");

 } catch (SocketException e) {

 Log_loc("Socket creation failure: " + e + "\n");

 jToggleButtonActive.setSelected(false); // Set the button off

 }

 } else { // The button is OFF

 if (serv != null) { // If thread is running

 serv.stopRunning(); // Stop the thread

 serv = null; // Thread will be garbadge collected after it stops

 }

 if (sock != null) { // If socket is active

 sock.close(); // Close the socket

 sock = null; // Forces garbadge collecting

 }

 Log_loc("Chat_udp stopped\n");

 }

}

2.1.3. Class Chat_udp – message handling

The message format defined in the application is:

As seen above, the UDP messages are received in Daemon_udp thread that calls the method

receive_packet, of the object of class Chat_udp to handle message content. In this method the

received data is written in the text area Remote:

Length (short) Message contents (byte[])

6

public synchronized void receive_packet(DatagramPacket dp, DataInputStream dis) {

 try {

 Date date = new Date(); // Get reception hour

 String from = dp.getAddress().getHostAddress() // IP address of the sending host

 + ":" + dp.getPort(); // + port of sending host = User ID

 // Read the packet fields using 'dis'

 int len_msg = dis.readShort(); // Read message length

 if (len_msg > MAX_PLENGTH) {

 Log_rem(formatter.format(date) + " - received message too long (" + len_msg +

 ") from " + from + "\n");

 return; // Leaves the function

 }

 byte[] sbuf2 = new byte[len_msg]; // Create na array to store the message

 int n = dis.read(sbuf2, 0, len_msg); // returns number of byte read

 if (n != len_msg) {

 Log_rem(formatter.format(date) + " - received message too short from " +

 from + "\n");

 return;

 }

 String msg = new String(sbuf2, 0, n); // Creates a String from the buffer

 if (dis.available() > 0) { // More bytes after the message

 Log_rem("Packet too long\n");

 return;

 }

 // Write message contents

 Log_rem(formatter.format(date)+ " - received from " + from + " - '" + msg + "’\n");

 } catch (IOException e) {

 Log_rem("Packet too short: " + e + "\n");

 }

}

2.1.4. Class Chat_udp – sending messages

Sending messages is performed using two functions. The first function, send_one_packet,

receives a packet (DatagramPacket class) with a message, sets the IP address and port number,

and sends it to the destination:
private void send_one_packet(DatagramPacket dp, InetAddress netip /* destination IP */,

 int port /* destination port */, String message) {

 try {

 dp.setAddress(netip); // Set destination ip

 dp.setPort(port); // Set destination port

 sock.send(dp); // Send packet

 // Write message to jTextAreaLocal

 String to = netip.getHostAddress() + ":" + port; // ‘name’ of remote host

 String log = formatter.format(new Date()) + " - sent to " + to

 + " - '" + message + "'\n";

 Log_loc(log); // Writes to Local text area

 } catch (IOException e) { // Communications exception

 Log_loc("Error sending packet: " + e + "\n");

 } catch (Exception e) { // Other exception (e.g. null pointer, etc.)

 Log_loc("Error sending packet: " + e + "\n");

 }

}

The previous function is invoked by send_packet function that reads the IP address and

port of the respective text boxes and prepares the message to send. Thus, it does not require

parameters:
public synchronized void send_packet() {

 if (sock == null) {

 Log_loc("Socket isn't active!\n");

 return;

 }

 InetAddress netip;

 try { // Get IP address

 netip = InetAddress.getByName(jTextRemIP.getText());

 } catch (UnknownHostException e) { // O endereço IP não é válido

 Log_loc("Invalid remote host address: " + e + "\n");

7

 return;

 }

 int port;

 try { // Get port

 port = Integer.parseInt(jTextRemPort.getText());

 } catch (NumberFormatException e) {

 Log_loc("Invalid remote port number: " + e + "\n");

 return;

 }

 String message= jTextMessage.getText();

 if (message.length() == 0) {

 Log_loc("Empty message: not sent\n");

 return;

 }

 // Create and send packet

 ByteArrayOutputStream os = new ByteArrayOutputStream(); // Prepares a message

 DataOutputStream dos = new DataOutputStream(os); // writting object

 try {

 dos.writeShort(message.length()); // Write the message's length to buffer

 dos.writeBytes(message); // Write the message contents to buffer

 byte[] buffer = os.toByteArray(); // Convert to byte array

 DatagramPacket dp = new DatagramPacket(buffer, buffer.length); // Create packet

 send_one_packet(dp, netip, port, message); // Send packet and log the event

 } catch (Exception e) { // Catches all exceptions

 Log_loc("Error sending packet: " + e + "\n");

 }

}

Messages are sent in when the button “Send” is pressed:
private void jButtonSendActionPerformed(java.awt.event.ActionEvent evt) {

 send_packet();

}

2.2. ADVANCED CHATUDP – EXERCISES

In this second phase of the work it is intended that the students perform a set of exercises on

the project with the first phase of the work. The first is to perform the sending of five messages

(one per second) for 5 seconds controlled by a timer, pressing a "Send 5" key. In the second, the

last message received from each of the other users is memorized. The third is to send a message

to a port on all machines on a network.

2.2.1. Sending messages using a timer

To accomplish this you must create a variable (object) timer, which will support the

sending of messages. To control the number of times that lack sending, it is also used a variable

cnt serving as counter – it counts the number of times that the timer should still fire.

Exercise 4.2.1A: add the following fields (variables) to the class Chat_udp:
private javax.swing.Timer timer; // Timer object

public volatile int cnt; // Counter - messages left to send

To use a timer, you must create the set_timer_function function that creates the timer

object, and defines the function that will be run when the time passes. Note that the timer is

created but not active - only when the start() method is invoked.

Exercício 4.2.1B: add the following method to the class Chat_udp:
private void set_timer_function(int period /*ms*/) {

 java.awt.event.ActionListener act; // Callback object

 act = new java.awt.event.ActionListener() {

 public void actionPerformed(java.awt.event.ActionEvent evt) {

 // Define the timer callback function

 if (cnt > 0) { // While there are more packets to send …

 send_packet(); // Send the packet

 cnt--; // Decrement the counter

8

 } else { // Counter reached 0

 timer.stop(); // Stop the timer

 }

 }

 };

 timer = new javax.swing.Timer(period, act); // Create the timer's object

}

To initialize the timer object, the method set_timer_function must be called when

starting the application (button "Active"), in the method

jToggleButtonActiveActionPerformed at the class Chat_udp. When it shuts down the

application, it is also necessary to turn off the timer.

Exercise 4.2.1C: add the invocation set_timer_function in the method of the class

Chat_udp that starts the application, passing as argument 1 second (1000 ms). It should be

placed after the successful creation of the socket and the thread.

Exercise 4.2.1D: add the code to turn off the timer object in Chat_udp’s class method that

stops the application (associated with the button "Active").

To finish, it is only missing a button "Send 5", which starts the timer.

Exercise 4.2.1E: add a button "Send 5" next to "Send" and program the event handling

function associated to start the timer (with timer.start();) if not already active (can know

that using timer.isRunning()), and properly initialize the value of cnt in order to send 5

packets. Remember that timer can be equal to null (because the application can be not active).

2.2.2. Memorize the last message from users

The intention of this exercise that the application remember the last message it received

from all users with whom it is communicating. To control this feature, it is proposed to use a

toggle button "Record" with the name jToggleButtonRecord. When the button is selected, all

incoming messages are saved. When the button is turned off all the latest messages from all

users should be written one by one.

Exercise 4.2.2A: Add one Toggle Button to the GUI, with the name jToggleButtonRecord

and with the text “Record”. Create the button handling function.

Messages will be recorded in an indexed list, where the index is defined by the

concatenation of IP address+”:”+port number (HashMap<String,String>).

Exercise 4.2.2B: add the following declaration of the list record to the class Chat_udp:
private HashMap<String, String> record = new HashMap<String, String>();

Each time a message is received, you need to create a string with the user identifier to use as

index. In the following exercises, you should save the message to the list associated with the

received message identifier.

Exercise 4.2.2C: add to method receive_packet (presented in section 2.1.3) the message

registration operation, if the button is selected:
if (jToggleButtonRecord.isSelected()) { // If button is selected

 String str = formatter.format(date) + " - received from " + from + " - '" + msg +

 "'\n";

 record.put(from, str); // Put string str into the list associated to key from

}

It is intended to write all records and sources stored in the list. An iterator will be used for

going through the list of keys. For each key, method get returns the last message associated

with the user. For instance, one can know the last message sent by "127.0.0.1:20000" doing the

invocation String str= record.get(“127.0.0.1:20000”).

9

Exercise 4.2.2D: add to the class Char_udp the method write_record, which writes to the

terminal the content of the list and clears the list.
public void write_record() {

 Iterator<String> it = record.keySet().iterator(); // interator over keys

 while (it.hasNext()) { // While there are more keys to get

 String remote = it.next(); // remote has next key

 System.out.println("\nCommunication with " + remote);

 System.out.println(record.get(remote));// Write the last message from remore

 }

 record.clear(); // Clear the list

}

To finish, it is only missing that the function that handles the event associated to pressing

the "Record" button (created in 4.2.2A) calls the method write_record when you turn off the

"Record" button.

Exercise 4.2.2D: program the method associated to "Record" button created in exercise

4.2.2A so as to invoke the method write_record only when the button is set off; note that the

method will also run when the button is turned on.

2.2.3. Sending messages to all computers in the network

The latter exercise should only be done if more than 20 minutes are left to the end of class.

It is intended to send a message to all computers that are connected to the network, instead

of sending only to one IP address. Laboratory 3.4 has 11 machines on the network 172.16.54.0,

occupying the IP addresses 172.16.54.101 - 172.16.54.111. If you are on another network, you

can know the network address information from the machine's IP address and network mask. To

control this “broadcast” sending, you should create a toggle button "All". If it is selected,

messages must be send to all machines and to the port selected. Therefore, all changes have to

be made only in send_packet method, which sould call the method send_packet for all

machines on the network.

Exercise 4.2.3:
1) Add a Toggle Button “All”;

2) Modify the method send_packet to generate all IP addresses and call the function

send_one_packet when the button "All" is selected. Tip: You can create a string with

the IP address, and then convert it to the type InetAddress.

	1. Objective
	2. Second Application – Network Chat with Datagrams
	2.1. Basic ChatUDP
	2.1.1. Daemon_udp class – Reception of data from UDP socket
	2.1.2. Class Chat_udp – initialization
	2.1.3. Class Chat_udp – message handling
	2.1.4. Class Chat_udp – sending messages

	2.2. Advanced ChatUDP – Exercises
	2.2.1. Sending messages using a timer
	2.2.2. Memorize the last message from users
	2.2.3. Sending messages to all computers in the network

