
 

 

Electrical Engineering Department 

 

 

 

 

 

 

 

 

 

 

Telecommunication Systems 
 

 

 

 

 

2012/2013 
 

 

 

 

 Laboratory Work 0: 

  Demonstration of the Java environment 

  Learning application development 

 
 

Class 3 – Aplication with connection oriented sockets 
 

 

 

 

Integrated Master in Electrical Engineering and 

Computers 
 

 

       Luis Bernardo 

       Paulo da Fonseca Pinto 
  



i 

Index 
1. Objetive ................................................................................................................................................................ 1 
2. Third Application – Network Chat with TCP ...................................................................................................... 1 

2.1. Basic ChatTCP ............................................................................................................................................. 1 
2.1.1. Daemon_tcp class – Accepting connections ..................................................................................... 2 
2.1.2. Connection_tcp class – message reception in a connection ......................................................... 3 
2.1.3. Chat_tcp class – initialization .......................................................................................................... 4 
2.1.4. Chat_tcp class – connection control ................................................................................................ 5 
2.1.5. Chat_tcp class – sending messages .................................................................................................. 6 
2.1.6. Chat_tcp class – receiving messages ............................................................................................... 7 

2.2. Advanced ChatTCP – Exercises ................................................................................................................... 7 
2.2.1. Sending the contents of a file ............................................................................................................... 7 
2.2.2. Several concurrent connections ............................................................................................................ 8 

 

 

 

 

 



1 

1. OBJETIVE 

Familiarization with the Java programming language and applications 

using connection oriented sockets, developed in the NetBeans environment. 
The work consists in the introduction of part of the code following the instructions set out, 

learning to use the environment and the set of library classes from the Java language. A project 

is provided with the start of the work, which is completed in a set of exercises. 

2. THIRD APPLICATION – NETWORK CHAT WITH TCP 

This section illustrates the development of an application using the connection oriented 

sockets (TCP). The application supports the exchange of messages and files over the network, 

where each participant has a window which receives messages from other elements (Remote) 

and a window where he types its messages (Local). The user specifies the IP address and port 

number of the machine he wants to connect, connecting or accepting a connection from another 

user, and he may terminate the connection. 

2.1. BASIC CHATTCP 

The first version only supports simple exchange of 

messages between users and a connection to one user each 

time. Students are provided with the complete NetBeans 

project of this first part. 

This project uses practically the same GUI of the 

example of the previous class (ChatUDP) and associated 

graphics functions, except that it adds a toggle button 

("Connect"), associated to jToggleButtonConnect, which 

was placed on the Remote panel, as is pictured in the right. 

The name of the main window was changed to "Chat 

TCP". 

 

While the GUI is almost equal, the implementation is substantially different because 

communication with TCP sockets uses two classes: ServerSocket (for incoming calls) and 

Socket (to create connections and to communicate). In addition, the communication includes 

two phases: first sets up the connection; only after that it can communicate. This way, the 

application has two states: 

 In the "IDLE" state it is waiting to connect, 

on its own initiative ("Connect" button) or 

receiving a connection from another user;  

 In the "CONNECTED" state there is an 

active connecton and receives and sends data 

concurrently.  

Thus, for each state there is always the need to have two activities in parallel. 

In IDLE state, the main thread linked to the graphical interface is used to handle the 

"Connect" button; another thread is used to wait for connections from other users.  

IDLE CONNECTEDConnection ended

Received Connection

Button “Connect”



2 

 

 

 

 

 

 

 

In the state CONNECTED the main thread is used to send user messages after pressing 

button "Send"; another thread is used to receive message from the TCP socket. 

 

 

 

 

 

 

 

In this initial version of the program it was decided to have only one extra thread running; 

"Thread 2" and "Thread 3" will never be running at the same time. The main class Chat_tcp is 

used to coordinate the starting and stopping of threads. 

2.1.1. Daemon_tcp class – Accepting connections  

Class Daemon_tcp performs the functionality of "Thread 2": it blocks waiting to receive 

connections on ServerSocket ss. As it should only accept one connection at a time, the thread 

(as defined in run method) only runs once the instruction ss.accept(), which returns an object 

s of class Socket. s is then used to exchange messages. It should be noted also the use of Java 

instructions try-catch-finally, to ensure that even with errors, the variable isRunning always 

gets the value false at the end of the thread. A novelty was introduced, compared to Chat UDP: 

method stopRunning relies on the instruction this.interrupt() in order to ensure that the 

operation accept is interrupted, avoiding accepting more active connections. 
public class Daemon_tcp extends Thread { 

  volatile boolean isRunning = false; 

  Chat_tcp root;                   // Main window object 

  ServerSocket ss;                 // server socket 

 

  public Daemon_tcp(Chat_tcp root, ServerSocket _ss) {  // Constructor 

    this.root = root; 

    this.ss = _ss; 

  } 

 

  public boolean isRunning() { 

    return isRunning; 

  } 

 

  public void run() {  // Thread “2” code 

    isRunning = true; 

    try { 

      Socket s = ss.accept();    // Waits for a new connection; s is a new Socket 

      root.start_connection_thread(s);  // Asks Chat_tcp to start the connection thread 

    } catch (Exception e) { // Exception 

      if (isRunning) { 

        root.Log_rem("Exception in Daemon_tcp : " + e); 

      } 

    } finally { // Always runs 

      isRunning = false; 

    } 

  } 

 

  public void stopRunning() {   // Stops main thread, interrupting the accept operation 

Main Thread 
Receive message 

from user 

Send message to the 

network and screen. 

Thread 3 
Receive message 

from socket 

Write message locally;      

If conection fails go to state 

IDLE 

Main Thread 
“Connect” 

button Start communication Thread; 

change to CONNECTED 

state 

Thread 2 
Receive connection 

at the socket 



3 

    if (isRunning) { 

      isRunning = false; 

      this.interrupt(); 

    } 

  } 

} // end of class Daemon_ tcp 

2.1.2. Connection_tcp class – message reception in a connection  

Class Connection_tcp implements the functionality of "Thread 3": it cycles waiting to 

receive messages from the socket associated with a connection, invoking the receive_message 

method of class Chat_tcp for each message received (i.e. for each new line of text). In addition, 

this class centralizes all communication through the socket: send_message provides the method 

for sending messages, and toString returns a string with a connection unique identifier 

consisting of "IP address : port number". Due to define the toString method, an object of this 

class can be automatically converted to a String object by the Java compiler. 

The protocol used to send the messages is to add a line feed ("\n") to the end of the 

message, allowing it to be read using the instruction in.readline(), which reads to the end of 

the line, extracting the end of line. Again, the instructions try-catch-finally are used to 

ensure that the connection is closed when the thread ends. The code inside finally is always 

executed regardless of whether an error occurred, return were called to exit the function or 

reached the end of the code inside the try. 
public class Connection_tcp extends Thread { 

  volatile boolean keepRunning = true; 

  Chat_tcp root;          // Main window object 

  Socket s;               // socket 

  PrintStream pout;       // Device used to write strings to the socket 

  BufferedReader in;      // Device used to read from socket 

 

  Connection_tcp(Chat_tcp _root, Socket _s) { 

    this.root = _root; 

    this.s = _s; 

  } 

     

  public String toString() {  // Returns the remote’s ID 

    if ((s==null) || !s.isConnected()) { 

      return "null"; 

    } 

    return s.getInetAddress().getHostAddress()+":"+s.getPort(); 

  }  

     

  public boolean send_message(String msg) {  // Sends a message through the connection 

    try { 

      pout.print(msg + "\n"); 

      return true; 

    } catch (Exception e) { 

      return false; 

    } 

  } 

 

  public void run() {  // Threads code 

    try { 

      String message; 

      in = new BufferedReader(new InputStreamReader(s.getInputStream(), "8859_1")); 

      pout = new PrintStream(s.getOutputStream(), false, "8859_1"); 

      while (keepRunning) {   // Loop waiting for messages 

        message = in.readLine();    // Blocks waiting for new messages (line of text) 

        if (message == null) {   // End of connection 

          return; 

        } 

        root.receive_message(this, message);  // Calls Chat_tcp object 

      } 

    } catch (Exception e) { // Catches all errors 

      if (keepRunning) { 

        System.out.println("Error " + e); 



4 

      } 

    } finally {   // Always runs this code, even when return is called! 

      try { 

        s.close();   // Close the socket and all devices associated 

      } catch (Exception e) { /* Ignore everything */ } 

      root.connection_thread_ended(this); // Inform Chat_tcp object that thread ended 

    } 

  } 

     

  public void stopRunning() {  // Stops the thread 

    keepRunning = false; 

    try { 

      s.close(); // Closes the socket and all devices associated; triggers an exception 

    } catch (Exception e) {  

      System.err.println("Error closing socket: "+e);  

    } 

  } 

} // end of class Connection_tcp 

2.1.3. Chat_tcp class – initialization  

 

The Chat_tcp class was created with the GUI, and is responsible for conducting the entire 

program logic. Three main variables used are: ss, conn and serv. The variable ss is of type 

ServerSocket, used to receive connections, the conn variable contains a thread object of type 

Connection_tcp that will receive and send messages (or is null if the thread is inactive); serv 

contains the thread object of class Daemon_udp (or is null if the thread is inactive), which will 

receive new connections. It also defines the auxiliary variable formatter, to format dates for 

writing as "hour: minutes", which is initialized in the declaration as it does not depend on any 

external value. 
// Variables declaration 

private ServerSocket ss;                           // server socket 

private Connection_tcp conn                        // Connection object; 

private Daemon_tcp serv;                           // thread for connection reception 

private java.text.SimpleDateFormat formatter =     // Formatter for dates 

                    new java.text.SimpleDateFormat("hh:mm:ss"); 

The initial value of the variables is defined in the class constructor (Chat_tcp method). The 

constructor also populates the text boxes with the IP addresses of local address, and sets the 

value of the local port to 20000 by default. 
public Chat_tcp() { 

  initComponents();  // defined by NetBeans, creates the graphical window 

  ss = null;         // Set null value – meaning “not initialized” 

  serv = null;       // Set null value – meaning “not initialized” 

  conn = null;       // Set null value – meaning “not initialized” 

  try { 

    // Get local IP and set port to 0 

    InetAddress addr = InetAddress.getLocalHost();  // Get the local IP address 

    jTextLocIP.setText(addr.getHostAddress());      // Set the IP text fields to  

    jTextRemIP.setText(addr.getHostAddress());      //    the local address 

  } catch (UnknownHostException e) { 

    System.err.println("Unable to determine local IP address: " + e); 

    System.exit(-1);    // Closes the application 

  } 

  jTextLocPort.setText("20000"); 

} 

As in ChatUDP, the application startup is controlled in the function that handles the toggle 

button "Active". When the button is selected, the function reads the number of the local port, 

creating ServerSocket ss, and creates and starts a thread that receives connections, pre-filling 

the number of local and remote port. On error, it turns off the button back to its initial state. 

When the button is deselected, it closes the threads and ss. 
  



5 

private void jToggleButtonActiveActionPerformed(java.awt.event.ActionEvent evt)  

  if (jToggleButtonActive.isSelected()) {  // The button is ON  

    int port; 

    try { // Read the port number in Local Port text field 

      port = Integer.parseInt(jTextLocPort.getText()); 

    } catch (NumberFormatException e) { 

      Log_loc("Invalid local port number: " + e + "\n"); 

      jToggleButtonActive.setSelected(false);  // Set the button off 

      return; 

    } 

    try { 

      ss = new ServerSocket(port);       // Create TCP Server socket 

      jTextLocPort.setText("" + sock.getLocalPort()); 

      jTextRemPort.setText("" + sock.getLocalPort()+1); 

      serv = new Daemon_tcp(this, ss);   // Create the connection receiver thread 

      serv.start();                      // Start the thread 

      Log_loc("Chat_tcp active\n"); 

    } catch (SocketException e) { 

      Log_loc("Socket creation failure: " + e + "\n"); 

      jToggleButtonActive.setSelected(false);  // Set the button off 

    } 

  } else { // The button is OFF 

    if (serv != null) {      // If connection receiver thread is running 

      serv.stopRunning();    // Stop the thread 

      serv = null;           // Thread will be garbadge collected after it stops 

    } 

    if (conn != null) {      // If connection thread is running 

      conn.stopRunning();    // Stop the thread 

      conn = null;           // Thread will be garbadge collected after it stops 

    } 

    if (ss != null) {        // If server socket is active 

      try { 

        ss.close();          // Close the socket 

      } catch (IOException ex) {  /* Ignore */  } 

      ss = null;             // Forces garbadge collecting 

    } 

    Log_loc("Chat_tcp stopped\n"); 

  } 

} 

2.1.4. Chat_tcp class – connection control  

There are two ways to start a connection: either receiving a call through the Daemon_tcp 

object, or starting a new connection using the "Connect" button. The first case was described in 

section 2.1.1, where we showed that after receiving the connection the method 

start_connection_thread of class Chat_tcp is invoked. In the method’s code, shown below, 

it is created and activated an object of class Connection_tcp. In addition, it selects the 

"Connect" button, allowing the user to stop the connection. 
public void start_connection_thread(Socket s) { 

  conn = new Connection_tcp(this, s);     // Create the connection thread object 

  Log_rem("Connected to " + conn.toString() + "\n"); 

  jToggleButtonConnect.setSelected(true); // Set ON the “Connect” button 

  conn.start();                           // Starts the connection thread 

} 

The second method of creating a connection is implemented in the function that handles the 

toggle button "Connect". If it is selected, it reads the values of text fields Remote IP and Remote 

Port and creates the object cs of class Socket connected to the remote user. If the connection is 

successful, the thread serv is stopped not to receive more connections and starts the thread conn 

associated with the connection using function start_connection_thread. On error, the 

"Connect" button is deselected. 

The "Connect" button is used to stop a call, when the button is not selected. 
  



6 

private void jToggleButtonConnectActionPerformed(java.awt.event.ActionEvent evt) { 

  if (jToggleButtonConnect.isSelected()) { // The button is ON - Start the connection 

    if (con != null) {  // A Connection is active; ignore request 

      return; 

    } 

    InetAddress netip; 

    try { // Test IP address in Remote IP text box 

      netip = InetAddress.getByName(jTextRemIP.getText()); 

    } catch (UnknownHostException e) { 

      Log_loc("Invalid remote host address: " + e + "\n"); 

      jToggleButtonConnect.setSelected(false); 

      return; 

    } 

    int port; 

    try { // Test port 

      port = Integer.parseInt(jTextRemPort.getText()); 

    } catch (NumberFormatException e) { 

      Log_loc("Invalid remote port number: " + e + "\n"); 

      jToggleButtonConnect.setSelected(false); 

      return; 

    } 

    try { 

      Socket cs = new Socket(netip, port); // Create and connect a socket to the remote 

      if (cs != null) {   // Is connected 

        start_connection_thread(cs);       // Start the connection thread 

        serv.stopRunning();                // Stop connection receive thread 

        serv= null; 

      } 

    } catch (Exception ex) { 

      Log_loc("Connection to " + jTextRemIP.getText() + ":" + jTextRemPort.getText() +  

                   " failed\n"); 

      jToggleButtonConnect.setSelected(false); 

    } 

  } else {  // The button is OFF – stop the connection 

    if (con != null) {   

      con.stopRunning();  // Stop the connection 

      con= null; 

    } 

  } 

} 

When Connection_tcp thread ends, the method connection_thread_ended is invoked at 

the main object of the class Chat_tcp. This method reactivates the thread Daemon_tcp and turns 

off the "Connect" button, making it ready to create new connections. 
public void connection_thread_ended(Connection_tcp th) { 

  Log_rem("Connection to "+ th.toString() + " ended\n"); 

  conn = null; 

  serv = new Daemon_tcp(this, ss);   // Create the connection receiver thread 

  serv.start();                      // Start the thread 

  jToggleButtonConnect.setSelected(false); // Set OFF the “Connect” button 

} 

2.1.5. Chat_tcp class – sending messages  

Messages are sent via the "Send" button, which invokes the method send_message. The 

implementation is simple in this case because the method uses send_message of class 

Connection_tcp, after getting the text that is in the Message text box. 
public synchronized void send_message() { 

  if (conn == null) { 

    Log_loc("Connection isn't active!\n"); 

    return; 

  } 

  String message = jTextMessage.getText();   // Get the text from the Message box 

  if (message.length() == 0) { 

    Log_loc("Empty message: not sent\n"); 

    return; 

  } 

  if (conn.send_message(message)) {          // Send the message using the conn object 



7 

    // Write message to jTextAreaLocal 

    Log_loc(formatter.format(new Date()) + " - sent '" + message + "'\n"); 

  } 

} 

2.1.6. Chat_tcp class – receiving messages  

The reception of messages is performed in Connection_tcp thread, but the content of the 

message is passed to Chat_tcp object through receive_message method, which simply write 

the content in respective window. 
public synchronized void receive_message(Connection_tcp con, String msg) { 

  try { 

    Date date = new Date();  // Get reception date 

    // Write message contents 

    Log_rem(formatter.format(date) + " - received '" + msg + "'\n"); 

  } catch (Exception e) { 

    Log_rem("Error in receive_message: " + e + "\n"); 

  } 

} 

2.2. ADVANCED CHATTCP – EXERCISES 

In this second phase of the work, it is intended that students make two exercises using the 

project with the basic ChatTCP. The first is to add a button to send the contents of a file. The 

second is to modify the program to run multiple connections in parallel. 

2.2.1. Sending the contents of a file  

To accomplish this task it is necessary to add a new button "Send File" and a file choosing 

object (File Chooser on Swing Windows). The function that handles the new button should open 

a file selection window (see the example of the Calculator) and invoke a new method to send a 

file (e.g. send_file) at the class Connection_tcp. This new method send_file receives the 

file (eg File f) and should, in this order, open the file in read mode, create a FileInputStream 

object, create a buffer (byte []), read the file contents into the buffer and send the content to 

the socket, not forgeting to close the FileInputStream object: 
public boolean send_file(File f) {   // Should be public because is called by Chat_tcp 

  FileInputStream fis = null; 

  try { 

    fis = new FileInputStream (f); // Open file input stream 

    byte[] buffer= new byte[fis.available()];// allocate a buffer with the  

                                             //     length of the file 

    int n= fis.read(buffer); // read the entire file to buffer;  

                             //n counts the number of bytes actually read 

    if (n != buffer.length) { 

      root.Log_loc("Did not read the entire file\n"); 

      return false; 

    } 

    pout.write(buffer, 0, n); // write to socket 

    return true; 

  } catch (IOException ex) { 

    root.Log_loc("Error sending file "+f+"\n"); 

    return false; 

  } finally { 

    try { 

      fis.close();   // Always close the file 

    } catch (IOException ex) { /* Ignore error */ } 

  } 

} 

Exercise 5.2.1: Add the method send_file to the class Connection_tcp. Implement the 

file sending functionality presented above at class Chat_tcp. See the support documentation and 

the Calculator example. 



8 

2.2.2. Several concurrent connections  

This exercise is complex, and will require the advanced use of lists, threads and classes. It is 

recommended that before you perform this exercise you remember how HashMaps were at 

Chat_udp and watch carefully as the two threads are managed in the project, as it is now. 

When it comes to allowing the use of multiple concurrent connections, the need arises to be 

"waiting" for messages on many sockets. In Java, we need a thread for each connection, so 

"many" threads will be used in parallel. The previous threads (Daemon_tcp and 

Connection_tcp) will be slightly modified: the object Daemon_tcp should be always active and 

there may be several Connection_tcp objects active. To keep the information about all 

Connection_tcp objects a data structure of type HashMap<String, Connection_tcp> is used, 

i.e. a list of connection objects, indexed by the string "IP:port" (which can be obtained in the 

class Connection_tcp with the method toString). Each user starts a single connection (using 

the “Connect” button), which will be stored in the variable conn, already on the program. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exercise 5.2.2A: Declare e initialize the list connlist at class Chat_tcp: 
private HashMap<String, Connection_tcp> connlist =  

                                              new HashMap<String, Connection_tcp>(); 

The class Connection_tcp is already prepared to have multiple objects running in parallel. 

It is only necessary to modify what happens each time an object of this class is started or 

stopped. When you create an object, it is necessary to add it to the list (you can not modify the 

conn object, because it is now used to identify the connection initiated locally). 

Exercise 5.2.2B: Modify the method start_connection_thread of class Chat_tcp in 

order to add the new object to the list connlist, returning the object created. 
public Connection_tcp start_connection_thread(Socket s) { 

  Connection_tcp c = new Connection_tcp(this, s);// Create the connection thread object 

  Log_rem("Connected to " + c.toString() + "\n"); 

  c.start();                           // Start the connection thread 

  connlist.put(c.toString(), c);  // Add object c to the list 

  return c; 

} 

When a Connection_tcp object ends, it should be removed from the list, and if it is the 

conn object, the variable must be set to null. The thread Daemon_tcp should not be modified. 

Exercise 5.2.2C: Modify the method connection_thread_ended of class Chat_tcp such 

that it adds the new object to connlist, returning the object created. 

“Connect” 

button 

Thread 3 (sn) 
Receive messages 

from Socket sn 

Write messages locally; If connection 

goes off, stop thread and remove it 

from connlist and conn. 

 

Thread 3 (s1) 
Receive messages 

from Socket s1 

Write messages locally; If connection 

goes off, stop thread and remove it 

from connlist and conn. … 

Main Thread 
Start communication thread, put 

it in connlist and in conn 

Thread 2 
Receive connection 

at the ServerSocket 

Start communication thread, put 

it in connlist (the HashMap) 



9 

public void connection_thread_ended(Connection_tcp th) { 

  Log_rem("Connection to " + th.toString() + " ended\n"); 

  if (th == conn) {      // if it is the thread initiated locally 

    conn = null; 

    jToggleButtonConnect.setSelected(false);  // Set the Connect button OFF 

  } 

  connlist.remove(th.toString());  // Removes the thread from the list using the key 

} 

To support multiple connections in parallel, thread Daemon_tcp should be in cycle 

indefinitely waiting for new connections, similarly to what happened in class Daemon_udp. 

Exercise 5.2.2D: Modify the thread Daemon_tcp, which should be in cycle waiting for new 

connections, and only stop due to an error or when the user terminates the thread.  

The "Connect" button also changes its operation. When you connect, you should save the 

Connection_tcp thread created in the variable conn, not changing the thread Daemon_tcp. The 

value of conn can be used to know if the object started (conn != null) or not (conn == null) 

a connection. When it is unselected, it should stop the thread started by the user, and remove it 

from the list. 

Exercise 5.2.2E: Modify the method jToggleButtonConnectActionPerformed of class 

Daemon_tcp to turn on/off the Connection_tcp thread started by the user, according to the 

description above. 

Messages (and files) should be sent through all connections.  

Exercise 5.2.2F: Modify the method send_message of class Chat_tcp in order to send 

messages through all connections. The method send_message should be invoked for all objects 

in the list connlist. For all objects, one can use an iterator over the values, obtained with: 
Iterator<Connection_tcp> it= connlist.values().iterator(); 

The message should be sent as long as the list is not empty (i.e. !connlist.isEmpty()). 

Exercise 5.2.2G: Modify the method associated with sending file in class Daemon_tcp in 

order to send the file to all connections. 

To complete the application, it is missing only the modification on the handling of "Active" 

button, which should terminate ALL active connections when the application shuts down. 

Exercise 5.2.2H: Modify the method jToggleButtonActiveActionPerformed of class 

Daemon_tcp in order to stop all active connections and clear the list at the end 

(connlist.clear()). As in previous exercises, you should stop each thread individually. 

 


	1. Objetive
	2. Third Application – Network Chat with TCP
	2.1. Basic ChatTCP
	2.1.1. Daemon_tcp class – Accepting connections
	2.1.2. Connection_tcp class – message reception in a connection
	2.1.3. Chat_tcp class – initialization
	2.1.4. Chat_tcp class – connection control
	2.1.5. Chat_tcp class – sending messages
	2.1.6. Chat_tcp class – receiving messages

	2.2. Advanced ChatTCP – Exercises
	2.2.1. Sending the contents of a file
	2.2.2. Several concurrent connections



