

Electrical Engineering Department

Telecommunication Systems

2012/2013

 Laboratory Work 1:

 Application using sockets TCP and UDP

Integrated Master in Electrical Engineering and

Computers

http://tele1.dee.fct.unl.pt

i

Index
1. Objetive .. 1
2. Specifications ... 1

2.1. Message Flow .. 1
2.2. Registration service ... 2
2.3. Keys service .. 3
2.4. File service .. 4

3. Program development .. 4
3.1. Client ... 4
3.2. Server .. 5
3.3. Goals ... 7

Student Posture .. 7

1

1. OBJECTIVE

Familiarization with the use of sockets for communication between

machines and the functioning of the programming interface of Java sockets.
The work consists in developing a system for transferring files with an initial registration

requests.

Suggestions: In certain parts of this document appears some text formatted

differently that begins with the word "Suggestion". It is not mandatory to follow

what is written there, but may be important for students or groups where there is not

yet at ease with programming, data structures and algorithms.

2. SPECIFICATIONS

It is intended to develop a file transfer service with prior registration of the clients. The

transfer system behaves as a portal for clients because they have to know only one address and

access port. The keys service and file service access ports are not publicly known.

The general idea is as follows: clients access the registration server (trader) for the address

and port of the keys server and then, when accessing the keys server, they get a key that will be

submitted when accessing to any service registered in the portal. In this work, the portal only

has one service – the file service. Before accessing the file service, the clients go again to the

registration service to obtain the file service’s port. In the possession of the key along with the

file server’s port, the clients access the file service to transfer the file. In response to the request,

the client receives information concerning the length of the file (0 means empty file and -1

means inexistent) and the content of the file. The key expires after one minute if not used for a

request to the file server. It is always necessary to ask for one key for each file transferred, even

if the file transfer fails because the file does not exist.

The structure of the work consists of a server block (process) and a client block (process).

The server block has the following components:

 Registration server (trader) – It is always waiting for requests from clients to one of

the two other services. It answers to each valid request with the server port and each

invalid request by stating "invalid".

 Keys server – Receives an enrolment request and returns a valid key for a transfer,

which has to be performed in less than one minute.

 File server – Receives a request to transfer binary files, in which the parameters are

the file name and key. If the key is not valid, or if the file does not exist returns a

length equal to or below 0. Otherwise returns the file contents.

The client block runs the procedures to transfer a file.

2.1. MESSAGE FLOW

The message sequence is shown in Figure 1, and consists of the following messages

(assuming that no errors exist of the type of invalid service, invalid keys, etc.):

(1) – The client sends a request message to the registration server for the keys service port;

(2) – The registration server answers with the socket address of the keys server;

(3) – The client requests a key to keys service;

(4) – The keys service generates a key and sends it to the client. The time of one minute

starts counting from the moment and ends when the client accesses to the file server;

(5) – The client sends a request message to the registration server for the file service port;

2

(6) – The server answers with the socket address of the file server;

(7) – The client proceeds to transfer the file:

(7a) – The client connects to the file server;

(7b) – Initially the client sends two lines of text across the TCP connection with the

key and file name;

(7c-7n-1) – The file server answers with the file size which can take values of zero or

negative to indicate errors. In case there is the requested file, the server sends the

file;

(7n) – The server closes the connection.

The communication with the registration server and keys server is done using datagram

sockets. Connection-oriented sockets are used for communication with the file service.

The steps 7c - 7n correspond to the transmission of the length and data of the file. No one

knows for sure how many packets will be received because the connection-oriented socket is a

stream of bytes and not of packets (for students to better realize this difference data must be

written on the socket using blocks of 1000 bytes at a time and the client must read blocks of

2000 bytes each).

UDP Socket

Registration

Server
File Server

TCP Server

Socket

1,5

2,6

4

7a

… 7c

7n

3

7b

Client Keys Server

TCP Client

Socket
UDP Socket

20000
UDP Socket

Fig. 1 – Sequence of messages exchanged

2.2. REGISTRATION SERVICE

The access to registration service uses datagram sockets. The access is represented by

messages 1,2 and 5,6 of Fig. 1 and obey to the following request-response protocol:

Message regist_req:// sequence of
 int port; // UDP port of the client
 short codServ;//code of the requested service
 /* keys service code = 15 */

 /* file service code = 31 */

Message regist: // sequence of
 boolean validSer; // validity of service

 /* false – invalid service */

 /* true - valid service */

 int portSer; // server’s port

Messages regist_req and regist have the two parameters represented. If the port in

regist_req does not match the port of the sender’s UDP socket, a "non-existent service" should

be returned.

regist_req

regist

3

As mentioned, the port of the registration server’s socket is the only known. It is customary

to call this a well-known socket (the IP address is associated to the machine; what is really

known is the port). All other sockets must be free ports since their values are supplied by the

various components. The known port of the first server running is 20020. If more than one

server runs on the same machine, they will have the port numbers 20021, 20022, etc.

Suggestion: The registration server must know what is the port of the datagram

socket associated with the keys service and with the stream socket of the file server.

The ports can be obtained using the method getLocalPort of the objects

associated of type DatagramSocket and ServerSocket.

2.3. KEYS SERVICE

Access to keys service uses datagram sockets and is exemplified by messages 3 and 4,

which obey to the protocol:

Message key_req: //sequence of
 int port; // UDP Port of the client

Message key: //sequence of
 short key_len; // number of byte of key
 byte[] key; // key

The client sends the request using the port that was given by the registration server. The

response contains the key.

Suggestion 1 – keys creation
To simplify the work, the keys server can return keys that are initially the value

of an integer variable incremented (perhaps starting a non-zero value). If you have

time, you should replace this original form by random keys, for example,

constructed from a random number (see code fragment below). In this case, you

must ensure that keys that exist at a given moment are unique, and that you do not

have two equal keys active at any given time.

private Random keygen= new Random();

int number= keygen.nextInt(1000000); // Random number between 0 and 999999

Suggestion 2 – Several active clients

Initially you can admit that there is at most one client active in every moment

(if you think that it simplifies programming). Should you have time after the work,

you should consider supporting multiple clients in parallel. In this case, when the

keys server generates a key for a customer, it must put it accessible to the file

server. It is recommended to use a list to store the allocated keys and to manage the

expiration time of the keys. When there is a file transfer, or when time passes, the

keys must be removed from the list. To save the key, students must create a new

class, with all the data that they consider relevant to manage time.

Suggestion 3 – Keys removal from list
After a minute, the key not used is invalid and must be removed from the list.

This operation can be performed by a timer, but cannot be held with only one

passage on the list, because the iterator used blocks any removal of list elements. It

key

key_req

4

is necessary to allocate an auxiliary list or array of variable size for storing outdated

keys, which could be removed only at the end.

2.4. FILE SERVICE

Access to the service file transfer must use connection-oriented sockets and obey the

protocol:

file_transf : //sequence of
 String key + “\n”; // Key
 String filename + ”\n”; // File name

file_exch : //sequence of
 String file_length +”\n”;
 /* -2 – invalid key */
 /* -1 – inexistent file */
 /* 0 – empty file */

 /* file length */

 contents /* sequence of bytes with

 file contents */

The communication of messages file_transf and file_exch will be accomplished through the

exchange of strings delimited by line breaks. The exception is the content of the files to be

transmitted in binary format without modifying the transmitted data. Do not forget that the

server sends, in each cycle of transmission, only 1000 bytes of the file (if you send the whole

file in a single writing will be penalized in the final evaluation of the work). In the end, the

server closes the connection. If you decide to try to support multiple clients in parallel,

remember you need to have a thread for each client, which should keep all relevant parameters

for that connection.

Suggestion: Do not forget that you should not under any circumstances block the main

thread (linked to the graphical interface). Any blocking operation (e.g. read or write the socket)

should be performed within a thread.

3. PROGRAM DEVELOPMENT

3.1. CLIENT

The client application is provided entirely implemented together with the statement of work.

A Java application was developed with the graphical interface shown below. After pressing

button "Subscribe" the client performs exchanges of messages between 1 and 6 depicted in

Figure 1. Thus, the program is ready to communicate with the file server, getting unlocked the

button "Get File". When pressed, exchanges of messages shown as 7 in Figure 1 take place.

During the file transfer, the bar illustrates the evolution of the reception of data from the file. At

any time you can abort a transfer by pressing the "Subscribe" button.

You can run the client from the terminal using the command: java –jar Client.jar

file_transf

file_exch

5

IP and port of

registration server

File name

Start application until

getting key and port

Message area

Timeout for UDP

requests

Request file transfer

Clear message area

3.2. SERVER

The work consists of making the server block. To facilitate the development of the program

and make possible the development of the program in the four classes provided, it is supplied an

incomplete Server program, with the graphical interface shown below, which already performs

part of the functionality requested. Each group can make all the changes you want to the base

program, or even draw a GUI from scratch. However, we recommend that you invest the time in

the correct implementation of the proposed protocols.

Registration and file

server’s ports

Clear the

message area
Start the application

Message area

Select the directory

to search for

requested files

The program provided is composed by four classes:

 Daemon_udp.java (complete) – Thread that receives datagram packets;

 Daemon_tcp.java (complete) – Thread that receives connections for the file service;

 SConn_tcp.java (to be completed) – Thread that handles a connection of the file

service;

 Server.java (to be completed) – Main class with the GUI, which manages and

synchronizes the objects used in the project.

The source code supplied reuses with minor modifications the Daemon_tcp and

Daemon_udp classes that were used in the laboratory work 0 and suggests two incomplete

classes which support user interface (Server) and the communication in a TCP connection.

Class Daemon_tcp was already used in the third class of laboratory work 0.

The class Daemon_udp of second class of laboratory work 0 was modified in this project to

allow being used with several UDP sockets in parallel. When you create an instance of this

class, you define a unique type (a number). When it receives a packet, the method called

(receive_packet) takes as its first parameter the value of the type. Therefore, several objects of

this class can coexist as long as their types are different.

6

public class Daemon_udp extends Thread {

 Server root; // Main window object

 DatagramSocket ds; // datagram socket

 int type; // socket type

 public Daemon_udp(Server root, DatagramSocket ds, int type);

 public void run(); // UDP socket thread code

 // Calls root.receive_packet(type, dp, dis);

 // everytime a new packet is received

 public void stopRunning(); // Interrupt a running thread

}

Class SConn_tcp defines a thread but is almost empty. The task of programming it was left

the students. In the end, before finishing, the thread must call the

root.connection_thread_ended informing the end of the connection.

The Server class is the main class. It includes the definition of the graphical interface, the

start of the socket of the registration service (trader) and the TCP socket. It also includes the

code to choose the directory to read files, and a set of empty callbacks, which should be done by

the students throughout the work.

public class Server extends javax.swing.JFrame {

 public final static int MAX_MLENGTH; // Maximum UDP message size

 public final static long KEY_VALIDITY; // Key validity (ms)

 /* Types of Service in Registration service */

 public final static byte KEY_SERVICE; // Key service

 public final static byte FILE_SERVICE; // File Service

 public final static int TRADER_SOCKET = 101; // Type of trader socket

 public void Log(String text); // Log function

 // Handle “Active” toggle button

 private void jToggleActiveActionPerformed(java.awt.event.ActionEvent evt);

 private void jButtonClearActionPerformed(java.awt.event.ActionEvent evt):

 public void close_all(); // Close all sockets and threads

 /* Logs an error message associated to the reception of a packet */

 public void Log_err(DatagramPacket dp, String type, String err);

 // Handle trader request – called by ‘receive_packet’

 public void handle_trader_packet(DatagramPacket dp, DataInputStream dis);

 // Handle an UDP packet of type ‘type’

 public void receive_packet(int type, DatagramPacket dp, DataInputStream dis);

 public File get_fileref(String filename); // Return the file descriptor associated

 // to a filename

 SConn_tcp start_connection_thread(Socket s); // Handle TCP connections received;

 void connection_thread_ended(SConn_tcp th); // Handle end of TCP Thread

// Variables declared

 private DatagramSocket tradersock; // UDP socket of the trader service

 private Daemon_udp daemon_trader; // Thread of the trader service

 private ServerSocket ss; // TCP socket of the file service

 private Daemon_tcp daemon_tcp; // Thread of the file service

 public SimpleDateFormat formatter; // Formatter for dates

}

7

3.3. GOALS

A sequence to implement the program Server can be:

1. Program the start of the socket and the thread of the keys service in the method

jToggleActiveActionPerformed of class Server. You should also program the

method close_all to close them;

2. Program the method that prepares the reply to requests to the registration service,

reading and validating all fields in the request and preparing the reply;

3. Program the method that handles the requests to the keys service, reading and

validating the fields of the request, and preparing a reply. In this first implementation

you can return the value of an integer value incremented linearly;

4. Program the method start_connection_thread of class Server such that an object

of class SConn_tcp is created and the thread associated is started. If you don’t feel

comfortable using threads, in a first approach you can prepare the program to have

only one active thread, postponing the support of multiple threads;

5. Program the class SConn_tcp to implement the file service protocol (do not forget to

send the file in blocks, to avoid penalizations). Program the method

connection_thread_ended of class Server;

6. Program the support for multiples concurrent clients, including the possibility to stop

all threads, in method close_all;

7. Implement the mechanism to validate the keys received in the file service, using

random values. It is suggested that an auxiliary class is created, to store the

information about the key and its validity. This class can then be used to create the

list, with all allocated keys.

8. Implement an automatic cleaning mechanism to clear the list of key, supported by a

timer that runs periodically.

ALL students must try to complete phase 5. In the first week of the work a general

introduction to the work is made and phase 2 should be finished. At the end of the second

week the phase 5 must have started. At the end of the third week you should have started

phase 7. At the end of the fourth and final week you should try to achieve the maximum

number of phases, taking into account that it is preferable to do less well (running and no

errors), than everything and nothing works.

Phases 2-3 and 4-5 can be implemented concurrently for groups with two or three elements,

shortening the work’s implementation time.

STUDENT POSTURE

Each group should consider the following:

 Do not waste time with the aesthetics of input and output data;

 Program in accordance with the general principles of good coding (using indentation

for comments, using variables with names conform to its functions ...) and;

 Proceed so that the work is equally distributed to the two members of the group.

	1. Objective
	2. Specifications
	2.1. Message Flow
	2.2. Registration service
	2.3. Keys service
	2.4. File service

	3. Program development
	3.1. Client
	3.2. Server
	3.3. Goals

	Student Posture

