

Electrical Engineering Department

Telecommunication Systems

2012/2013

 Laboratory Work 2:

 Data link layer protocols with sliding window

Integrated Master in Electrical Engineering and

Computers

http://tele1.dee.fct.unl.pt

i

Index
1. Objective .. 1
2. Specifications ... 1

2.1. Frames types .. 2
2.2. Data Link layer protocols .. 3
2.3. Simulation Scenario .. 4

3. Program Development.. 5
3.1. Channel Application .. 5
3.2. Protocol Application ... 6

3.2.1. Commands .. 7
3.2.2. Events ... 8
3.2.3. Network layer ... 8
3.2.4. Creation and Reading of frames ... 9
3.2.5. Utopian Protocol .. 9

3.3. Goals ... 10
Student Posture .. 10

1

1. OBJECTIVE

Familiarization with the sliding window data-link layer protocols, of type

Stop & Wait, Go-Back-N.
The work consists in development of a data-link layer protocol based on sliding window, of

type Go-Back-N with Nack, in a phased manner. For this, it is provided a system simulator

developed in the course using TCP sockets, which simulates the operation of the network

protocol level and physical level.

Suggestions: In certain parts of this document appears some text formatted

differently that begins with the word "Suggestion". It is not mandatory to follow

what is written there, but may be important for students or groups where there is not

yet at ease with programming, data structures and algorithms.

2. SPECIFICATIONS

The aim is to develop a data-link layer protocol for a point-to-point physical connection,

which interacts with the Network layer and Physical layer protocols, respectively through the

interfaces of the services of the Logical and Physical layers. Thus, the system represented below

will be simulated through the set of primitives of the two services.

The proposed approach was inspired in the simulator described in sections 3.3 and 3.4 of

the recommended book (Computer Networks 5th edition), although it makes the simulation a bit

closer to reality (e.g. it considers the transmission time of data frames). The data-link layer

protocol will react to events and can invoke commands.

The Data Link layer begins with the event that is served by the method

start_simulation(). To receive packets (strings) from the Network layer, the data-link layer

uses the method from_network_layer() and sends packets (strings) to the Network layer

invoking the method to_network_layer(). The data must be delivered in the same order they

were received, recovering from channel errors at the Physical layer.

The protocol can send frames to the Physical layer using to_physical_layer() and it can

receive frames from the Physical layer in its method from_physical_layer(), invoked by the

Physical layer protocol.

Finally, you can use a set of support features to manage timers. Using the methods

set_timer and cancel_timer, you can set or cancel a timer identified by a number greater than

or equal to zero (called key). When the time expires, the method handle_timer() is called. The

Physical layer service

Data Link layer service

Data Link

Layer

Lógico

3

2

1

Data Link

Layer

3

2

1

Data link layer

protocol

2

figure below illustrates what was just described. Students should implement the balloon called

"Protocol".

2.1. FRAMES TYPES

The protocol can send or receive three kinds of frames: DATA, ACK or NACK.

Data frames (DATA)

The data frames have the following fields:

 Sequence number (seq)

 Acknowledgment (ack)

 Information (info)

The frames are numbered with a seq number between 0 and a maximum number specified

in a window (sim.get_max_sequence()). The ack field contains the sequence number of the

last data frame received.

The data frames have a non-null transmission time, so its transmission is carried out in two

phases:

1) It starts sending the frame using the method to_physical_layer;

2) It is received an event handle_Data_end, stating that ended the sending of the data

frame.

Other frames can not be sent between the beginning of the sending of a data frame and the

reception of the end event.

Acknowledgment frames (ACK)

The acknowledgement frames (ACK) are generated after the reception of data frames,

indicating the sequence number of the last data frame successfully received. The ACK frame is

considered instantaneous, being sent on a single method invocation to to_physical_layer. The

ACK frame contains a single field:

 Acknowledgment (ack)

As it is more efficient to send this information via data frames (for piggybacking), an

auxiliary timer was set (ack_timer) that can be used to wait for a data frame, only sending ACK

after this time. Thus, after receiving a data frame you should:

cancel_timer (…)

start_simulation (…)

from_network_layer (…)

from_physical_layer (…)

to_physical_layer (…)

set_timer (…)

handle_Timer (…)

Protocol

handle_Data_end (…)

handle_ack_Timer (…)

to_network_layer (…)

3

1) Start the ACK timer using the method start_ack_timer();

2a) If a data frame to transmit arrives, the timer can be canceled using the method

cancel_ack_timer();

2b) If the timer expires, the event handle_ack_Timer is generated, which should send the

ACK frame.

Negative acknowledgement frames (NACK)

The negative acknowledgment frames (NACK) can be generated in sliding window

protocols due to incoming data frames out of order (e.g. it is waiting for the frame 0 and

receives the 1) as a result of having jumped some sequence number. It is also considered an

instantaneous frame and only has one field:

 Acknowledgement (ack), with the sequence number of a data frame to be

retransmitted.

The receiver of this frame should retransmit the data frame requested as soon as possible.

To prevent the send from continuously retransmiting the same frame, the NACK may be

generated only once for each sequence number.

2.2. DATA LINK LAYER PROTOCOLS

In sections 3.3 and 3.4, the recommended book describes the three basic types of data link

layer protocols that will be made in this work. This section briefly reproduces the fundamental

aspects of each, but we recommend a careful reading of the book for proper completion of the

work.

Utopian protocol

The Utopian protocol is described in section 3.3.1 of the book, corresponding to realize the

transmission of frames sequentially without any error recovery mechanism. The receiver is

limited to receive the frames and send them to the network level.

It is provided the complete code of a bidirectional version of this protocol with the work

assignment.

Stop & Wait protocol

The Stop & Wait

protocol is described in

section 3.4.1 of the

book and corresponds

to a sliding window

protocol with unitary

transmitting and

receiving windows.

The sender holds the

next sequence number

transmitted and the

receiver the next

expected sequence

number, in accordance

with the diagram to the

right.

Sender

7 0

4 3

2

1 6

5

7 0

4 3

2

1 6

5

7 0

4 3

2

1 6

5

7 0

4 3

2

1 6

5

Receiver

7 0

4 3

2

1 6

5

7 0

4 3

2

1 6

5

7 0

4 3

2

1 6

5

7 0

4 3

2

1 6

5

Start 1st frame

was sent
1st frame

was received

1st ack was

received

4

The sender shall set a timer each time it sends a data frame. If it expires, you should

resubmit the plot. When an ACK (or data frame) confirm the frame, you should cancel the timer

and send the next frame.

Go-Back-N protocol

The Go-Back-N protocol is described in section 3.4.2 of the book. It corresponds to a

sliding window protocol with a unitary receiving window, which uses pipelining to improve

performance when the bandwidth * delay product is high.

In this case, the sender will need an array to maintain the transmit buffers, and may transmit

up to sim.get_send_window()frames without receiving acknowledgments (i.e. transmission

window). When an error occurs, it has to retransmit all data frames from the one that has not

been confirmed, as shown in the figure below.

The management of timers is somewhat more complex in this protocol. The ideal is to

maintain a timer for each individual pending frame. You can also use a single timer on the older

unconfirmed frame at a given time. In the latter case, the timer would be reset each time it is

confirmed a new data frame.

Sugestions: As the management of various timers can make the program slightly

more complex, it is suggested that the implementation is carried out in two phases:

i) the first can use only one timer, ii) the second should use a timer for each pending

data frame.

Go-Back-N with NACK protocol

The Go-Back-N with NACK protocol is not directly described in the book. It adds the

NACK frame to the Go-Back-N protocol, as is described in section 3.4.3 of the book, introduced

in the context of a selective repeat protocol. In Go-Back-N is somewhat simpler, because it will

be necessary to transmit everything starting from seq. So it accelerates the response to the loss

of frames compared to waiting for the timer expiration.

2.3. SIMULATION SCENARIO

In this work, a network with variable delay time and a constant average frame loss rate is

simulated. Two programs are used:

 Protocol – implements the data link layer protocol and emulates the network level,

controlling the sending and receiving of data packets numbered sequentially. The

data link layer part will be made by students;

 Channel – connects two instances of Protocol, emulating the propagation time and

missing frames with a certain probability of loss.

5

After booting, the channel accepts two TCP connections from two Protocol programs,

starting a new simulation. The channel implements a discrete event scheduler, receiving the

commands generated by the protocols and generating the events related to the physical level and

the timers shown previously, ordered according to the simulation time. The simulation time is

measured in units of virtual time, called tics.

Both the protocol and the channel provided with the statement write briefly (or

exhaustively, in debug mode) the events and commands that are generated, and the contents of

the queue with events waiting to be fired.

3. PROGRAM DEVELOPMENT

3.1. CHANNEL APPLICATION

The channel application is provided fully

implemented. It consists of a Java application

with the GUI shown on the right. Pressing the

button "Active", the channel starts a

ServerSocket on the IP and port shown,

getting ready to receive connections from

protocols, to be designated respectively the

protocol (User) A and B.

The application allows you to perform

various configurations of the simulation

scenario:

 “Delay” – propagation time of frames

in the channel;

 “Data d” – duration of a data frame

(time between sending the frame and

the event Data_end);

 “PER [%]” – average Packet Error

Rate in the channel, which can affect

all frames transmitted with equal

probability;

 “End Simulation” – controls whether

the channel automatically terminates a

simulation when it does not receive

events for a second, or if the decision is

left to the user by pressing the "Active" button;

 “Write to File” – controls whether messages written to the screen are echoed to a file.

At the end of the simulation, it is a written report with the value of the various settings used

in the channel and protocols, and several measures of system performance for protocols A and

B. The measures are:

Channel Protocol A Protocol B
 TCP TCP

6

 Last event – time of the last event that the protocol received / originated, returning the

total delay that occurred to send and receive all the data;

 Payloads transmitted – number of packets transmitted by the network level;

 Payloads received – number of packets received by the network level;

 Payloads rec. invalid – number of packets received out of order by the network level;

 Frames retransmitted – number of retransmitted data frames (the programmer should

explicitly update this counter);

 Total data frames sent – total number of data frames sent;

 Data frames lost – number of data frames lost due to channel errors;

 Data frames successful – number of data frames received successfully;

 Total ack frames sent – total number of ACK frames sent;

 Ack frames lost – number of ACK frames lost due to channel errors;

 Ack frames successful – number of ACK frames received successfully;

 Total nack frames sent – total number of NACK frames sent;

 Nack frames lost – number of NACK frames lost due to channel errors;

 Nack frames successful – number of NACK frames received successfully;

 Timeouts – number of Timeout events received;

 Ack timeouts – number of ACK_Timeout events received.

The performance of the developed protocols will be measured using these metrics,

highlighting the delay and the ratio of the total number of packets transmitted per data packet. It

is suggested that the performance of the protocols is tested for: i) a scenario without error and

with adjusted timeout (PER = 0 and Timeout = 22 tics), ii) scenario with errors and adjusted

timeout (PER = 50% and Timeout = 22 tics), and iii) scenario with errors and a long timeout

(PER = 50% and Timeout = 44 tics).

You can run the channel from the terminal with the command: java –jar Channel.jar

3.2. PROTOCOL APPLICATION

The work consists solely in implementing the data link layer protocols. Everything else is

supplied fully realized. The two figures below represent the protocol nodes A and B with

protocol messages generated according to channel figure previously shown.

7

The graphical interface allows you to define which channel is connected, selecting the IP

and port. The simulation starts when you press the "Connect" button and the channel generates a

start event simulation.

Through the graphical interface, you can set:

 Packets – the number of packets that will be sent during the simulation;

 Max. Seq. number– the maximum sequence number (generaly given by 2
n
-1);

 Send Window – the sending window size;

 Recv Window – the receiving window size (it is always 1 in this work);

 Timeout – time waiting for an acknowledgment before resending a data frame.

There is also a combo box that allows you to choose the data link layer protocol: Utopian;

Stop & Wait, Go-Back-N, and Go-Back-N with Nack. The objective is to develop the code for

the last three protocols.

The given program consists of three packages, each having the following classes:

- Package terminal:

 Terminal,java (completed) – Main class with graphical interface that manages the

timing of various objects used;

 Connection.java (completed) – Thread that habndles the TCP connection to the

channel;

 NetworkLayer.java (completed) – Class that implements the network layer interface;

- Package simulator:

 Frame.java (completed) – Class that saves and serialises frames;

 Event.java (completed) – Class that saves and serialises events;

 Log.java (completed) – Interface that defines the Log function;

- Package protocol:

 Simulator.java (completed) – Interface that defines all the commands that can be

used to implemente a daat link layer protocol;

 Callbacks.java (completed) – Interface that defines all the methods that must be

implemented while performing a data link layer protocol;

 Protocol1.java (completed) – Implementation of the Utopian data link layer

protocol;

 Protocol2.java (to be completed) – Implementation of the Stop & Wait protocol;

 Protocol3.java (to be completed) – Implementation of the Go-Back-N protocol;

 Protocol4.java (to be completed) – Implementation of the Go-Back-N protocol

with NACKs;

Students will only modify the last three files, to implemente the desired protocols, mainly using

the methods defined in the interfaces Callbacks and Simulator, described in the next section.

3.2.1. Commands

In the Protocol class code that is provided to students, you can invoke on the sim object the

following methods (which were defined in the Simulator interface). The purpose of each is

explained below:

 Get the size of the sending window:
 int get_send_window();

 Get the maximum sequence number:
 int get_max_sequence();

 Get the timeout value:
 long get_timeout();

8

 Get the current simulation time:
 long get_time();

 Send the frame frame to the physical layer (i.e. to the channel):
 void to_physical_layer(simulator.Frame frame);

 Start a timer associated to the key key. If it is started twice with the same key, the first

timer is cancelled:
 void set_timer(long delay, int key);

 Cancel the timer associated with the key key:
 void cancel_timer(int key);

 Start the ACK timer:
 void set_ack_timer();

 Cancel the ACK timer:
 void cancel_ack_timer();

 Stop the simulation:
 void stop();

To allow a correct counting of the number of retransmitted data frames, the method

count_retransmission should be called each time a frame is retransmitted:
 void count_retransmission();

3.2.2. Events

Think of the event as something that causes the invocation of the callback methods. These

methods will be implemented by the students in a Protocol class, and were defined in the

Callbacks interface:

 Start of simulation:
 void start_simulation(long time);

 End of transmission of the data frame with the sequence number seq:
 void handle_Data_end(long time, int seq);

 Firing of the timer associated with the key key:
 void handle_Timer(long time, int key);

 Firing of the ACK timer:
 void handle_ack_Timer(long time);

 Reception of the frame frame from the physical layer:
 void from_physical_layer(long time, simulator.Frame frame);

 End of simulation:
 void end_simulation(long time);

In all events, it is received the current simulation time in time.

3.2.3. Network layer

Class terminal.NetworkLayer defines the methods to exchange packets with the network

layer, and is instanciated in net object:

 Get a new packet from network layer (if there is no longer any more to send, returns

null):
 String from_network_layer();

9

 Send a new packet to the network layer (in case of error returns false):
 boolean to_network_layer(String packet);

3.2.4. Creation and Reading of frames

The frames are objects of class simulator.Frame (import Simulator.Frame). This

class contains the fields as explained previously (seq, ack, info, etc.) plus another one called

kind. In addition, it has static methods for creating new instances of objects, and methods for

accessing various fields. The kind field defines the type of frames, having three valid values for

a valid frame: Frame.DATA_FRAME, Frame.ACK_FRAME or Frame.NACK_FRAME; and the value

Frame.UNDEFINED_FRAME when it is not initialized.

The method kind() can be used to get the value of kind.

To create a new frame of each of the three types it is possible to use the methods:
public static Frame new_Data_Frame(int seq, int ack, String info);

public static Frame new_Ack_Frame(int ack);

public static Frame new_Nack_Frame(int nack);

To access the fields you can use the methods:
public int seq(); // for DATA_FRAME

public String info(); // for DATA_FRAME

public int ack(); // for DATA_FRAME, ACK_FRAME, NACK_FRAME

public long snd_time(); // time when it was sent

It is also possible to get a textual description of the contentes of a frame:
public String kindString(); // return the kind of the frame

public String toString(); // return the kind and the content summary

Two methods were defined to enable the transportation of frames through TCP sockets,

which convert the contentes to and from strings (i.e. do object serialization). These functions

will not be used by students, but generate the representation that is shown in the applications

log.
public String frame_to_str();

public boolean str_to_frame(String line, Log log);

3.2.5. Utopian Protocol

The class Protocol1 was developed to serve as an example for students. It performs the

utopian protocol described above. The class adds to the interface Callbacks two state variables,

two methods for sequence numbers and a method to centralize the sending of frames to the

physical layer.

The state variables are used to control the sequence numbers used in the frames:
private int next_frame_to_send; // Number of the next data frame to be sent

private int frame_expected; // Expected number for the next data frame received

The two methods are used to incremente/decrement a sequence number, which considers

the maximum sequence number used in the simulation:
int incr_seq(int n);

int decr_seq(int n);

The method to send frames is private and is the following:
private boolean send_next_data_packet() {

 String packet= net.from_network_layer(); // Get a packet from the network layer

 if (packet != null) {

 next_frame_to_send= incr_seq(next_frame_to_send); // Increment the seq. number

 // Create a new Frame object

 Frame frame = Frame.new_Data_Frame(next_frame_to_send, frame_expected, packet);

 sim.to_physical_layer(frame); // Send the frame to the physical layer

 return true;

 }

 return false; // Failed; no more packets to send

}

10

This method is called:

 In the beginning of the simulation:
public void start_simulation(long time) {

 sim.Log("\nUtopian Protocol\n\n");

 send_next_data_packet(); // Start sending the first data frame

}

 When the sending of a data frame ends:
public void handle_Data_end(long time, int seq) {

 send_next_data_packet(); // Send the next data frame

}

Frames are received in method from_physical_layer, which does a little more than the

original version of the book – it verifies if it is the expected sequence number, and advances it to

the next frame.

public void from_physical_layer(long time, Frame frame) {

 sim.Log(time + " protocol1 received: " + frame.toString() +"\n");

 if (frame.kind() == Frame.DATA_FRAME) { // Check the frame kind

 if (frame.seq() == frame_expected) { // Check the sequence number

 net.to_network_layer(frame.info()); // Send the frame to the network layer

 frame_expected = incr_seq(frame_expected);

 }

 }

}

The remaining methods of interface Callbacks are not used in this protocol. They simply

write that were invoked.

3.3. GOALS

A sequence for the development of the work can be:

1. Program the Stop&Wait protocol in class Protocol2. Start by studying the

implementation of Utopian protocol, in class Protocol1, to see what can be reused;

2. Program the Go-Back-N protocol with a single timer in class Protocol3. Start by

looking into your implementation of the Stop&Wait protocol, in class Protocol2, to

realize what you can reuse;

3. Complete the programming of Go-Back-N protocol, introducing the use of multiple

parallel timers for the different frames and the ACK timer in Protocol3 class (do

not forget to backup the first version);

4. Program the Go-Back-N protocol with NACKs in class Protocol4, starting from

class Protocol3.

ALL students must try to complete phase 2. In the first week of the work a general

introduction to the work is made and phase 1 should be finished. At the end of the second

week the phase 2 must be almost completed. At the end of the third week you should have

ended phase 3. At the end of the fourth and final week you should try to achieve the

maximum number of phases, taking into account that it is preferable to do less well (running

and no errors), than everything and nothing works.

STUDENT POSTURE

Each group should consider the following:

 Do not waste time with the aesthetics of input and output data;

11

 Program in accordance with the general principles of good coding (using indentation

for comments, using variables with names conform to its functions ...) and;

 Proceed so that the work is equally distributed to the two members of the group.

