

Electrical Engineering Department

Telecommunication Systems

2013/2014

 Laboratory Work 0:

 Demonstration of the Java environment

 Learning application development

Class 1 – First Application

Integrated Master in Electrical Engineering and

Computers

 Luís Bernardo

 Paulo da Fonseca Pinto

i

Index
1. Objective .. 1
2. NetBeans environment for Java ... 1
3. First application - Adder .. 2

3.1. Simplified adder .. 2
3.1.1. Class Calc_State .. 3
3.1.2. Class Calculator – Graphical interface ... 4
3.1.3. Class Calculator – Reading numbers .. 5
3.1.4. Class Calculator – Calculation ... 6
3.1.5. Class Calculator – Writing to file ... 6
3.1.6. Class Calculator – Starting and stopping the application... 8

3.2. Complete Calculator – Exercises for the first class.. 8
3.2.1. Numerical buttons ‘0’ to ‘9’ ... 8
3.2.2. Multiplication operation ... 8
3.2.3. Timing ... 9

1

1. OBJECTIVE

Familiarization with the Java programming language and application

development in the NetBeans development environment. The work consists in the

introduction of part of the code following the instructions set out, learning to use the

environment and the set of library classes from the Java language. A project is provided with the

start of the work, which is completed in a set of exercises.

2. NETBEANS ENVIRONMENT FOR JAVA

The system includes several Java packages for building GUI applications. The two most

popular are the java.awt.* and javax.swing.*. You can program applications directly

in a text editor, but it is convenient to use an integrated development environment for

applications that integrates a GUI editor, text editor, compiler and debugger. It was chosen for

this class the NetBeans environment due to the vast functionality available, compatibility with

Linux, Windows and MacOS, and due to the price (http://www.oracle.com/technetwork/

java/index.html).

The NetBeans environment contains several windows that support a diverse set of options.

There are four main modes of operation: "Editing" (text editing), "GUI Editing" (graphical

editing interface), "Running" (running applications), and "Debugging" (running step by step,

illustrated in the Figure below). Alongside there are several options achievable through menu

options, or buttons. Pictured is represented the editing mode, which includes at left and up a list

of projects, with the list of files for each project. In the projects that will be implemented in the

discipline, there is one file associated with each class. In the "Projects" appears the list of

packets (Source Packages) per project, and for each package comes the list of files:

Calc_State.java and Calculator.java, associated respectively to the classes with the same name:

Calc_State and Calculator.

When selecting a file, appears in the window below (left) the list of methods (functions),

constants and variables declared in that class, allowing you to quickly navigate to the function

code, represented in the editor. In the editor, you can easily access help information on an

object. For example, if you introduce in the function represented, “dp.”, a window is open with

the list of supported methods in the DatagramPacket class and a description of each method.

To compile , or run with () or without () debug, simply use the keys indicated.

The figure below is the text editing window of NetBeans, with a hierarchical view of the

code. Marked in blue appears that IDE generated code that can not be modified. The reserved

words appear in blue letters, comments with gray letters, and the strings appear in red letters.

In this document the development of applications with a demonstration of the features of

Java and NetBeans environment will be presented, step by step. It is recommended that students

follow the description as a way to learn. At the end, for each application it is proposed a set of

exercises to be performed by students.

http://www.oracle.com/technetwork/%20java/index.html
http://www.oracle.com/technetwork/%20java/index.html

2

3. FIRST APPLICATION - ADDER

This application will be implemented in two phases:

1. it is performed only minimal functionality of numbers input, sum and registration

operations on a window and to a file.

2. It is performed a simplified calculater, adding the support for more operations.

The NetBeans project is provided to the students with the

first phase implemented. To access the project, the students must

begin by unpacking the file Calculator.zip to a local directory.

Then you should select “File”; “Open Project…” (as shown at

right), and open the Calculator project.

The project code is inside a package with the name

calculator, and has two files corresponding to the two classes

that compose it. The figure at the beginning of the page

reproduces what you shall see after opening the project, if you

select the file Calculator.java and the method calc_number.

Students should analyze this code following the description

that is made in the early part of this document. Then, you should

use it to complete the second phase, as exercise.

3.1. SIMPLIFIED ADDER

The aim is to program a calculator that accepts inputs of numbers both by a set of buttons as

through an array of characters (string) directly on the screen of the calculator, which supports a

minimal set of operations ("+" and "=") to create a record of all transactions in a text window,

and optionally, in a file.

3

The implementation will be based on two classes: the class Calc_State is used to keep the

parcels during the calculation and the Calculator class defines the graphical user interface.

The approach used in the class Calc_State is to split expressions in a sequence of pairs

(value, operation) and perform calculations sequentially, one pair at a time, using the method

push_operation. The class has state the pending parcel (operand) and the pending operation

(oper, of type char), which is initialized with IDLE_OPER, null operation. For example, the

operation "2+3+4=" is accomplished with the composition of three pairs: (2, +) (3, +) (4, =). The

evolution of the state in Calc_State for each operation will be:

IDLE_OPER (2,+) (5,+) (9,=)

The final result is stored in the value of operand.

3.1.1. Class Calc_State

The source code of class Calc_State is shown in the box below. It includes the definition

of a constructor (run when invoking the operation new Calc_State()) that starts the state of the

object, a method that restores the initial state (reset()) and the declaration of two private

variables (not accessible directly). It also includes a constant (Calc_State.IDLE_OPER), which

defines a state with no pending operation. Two methods are defined to access the variables’

values: last_oper() and operand(). The main method is push_operation(new_operand,

new_operation), which performs calculations updating the state of the object, returning true

on success, or false otherwise.
public class Calc_State {

 public static final char IDLE_OPER= ' '; // Constant

 public Calc_State() { /* Constructor */

 operand= 0;

 oper= IDLE_OPER;

 }

 public char last_oper() { /* Returns the last operation */

 return oper;

 }

 public long operand() { /* Returns the current operand */

 return operand;

 }

 public void reset() { /* Resets the state to the default values */

 operand= 0;

 oper= IDLE_OPER;

 }

 /* Adds a new pair (operand, oper) to the state */

 public boolean push_operation(long new_operand, char new_oper) {

 switch (oper) { // Calculate the pending operation

 case IDLE_OPER: // First operand

 operand= new_operand;

 break;

 case '+': // Calculate pending addition

 operand += new_operand;

 break;

 case '=':

 break;

 default: // Error - operation not supported

 reset();

 return false;

 }

 // Memorizes pending operation

 oper= new_oper;

 return true;

(2,+) (3,+) (4,=)

4

 }

 // Class local variables

 private long operand;

 private char oper;

}

3.1.2. Class Calculator – Graphical interface

The design of the GUI is done using the "Design" mode, represented in the figure below. To

develop this application several types of graphical components will be used (selected in the

"Palette", at right in the picture) that are added to a JFrame window:

 7 objects Button (from folder 'Swing Controls') {for buttons 0-1, +, =, C, etc.}

 1 object ToggleButton (folder 'Swing Controls') {for the button with state ‘ToFile’}

 1 object Text Field (folder 'Swing Controls') { Calculator display }

 1 object Text Area (folder 'Swing Controls') { Window with operation registry }

 2 objects Panel (folder 'Swing Containers') { Groups of buttons }

 1 object Scroll Pane (folder 'Swing Containers') { Slidding bars for TextArea }

Besides, a component of type File Chooser (folder 'Swing Windows') to choose the

name of the file to store the calculation log.

Graphic objects were arranged according to the figure above, and the names of objects (e.g.

the Text Field (type JTextField) was named jTextNumber) and the text of the buttons were

edited, as shown in the "MembersView" in the bottom left of the picture above. In addition, the

following properties were configured:

 object JFrame

 Layout was set to BoxLayout with Axes= ‘Y Axes’; // Vertical organization of the panels

 objects jPanel1 and jPanel2

 Layout was set to GridLayout, with a grid size (Columns=3; Rows=4) and (Columns=3;

Rows=2) respectively for panels 1 and 2.

 MaximumSize= [210,116] and [210,60] respectively for panels 1 and 2, to limit the

vertical growth of the panels with the buttons.

 PreferredSize= [31,116] and [104,60] respectively for panels 1 and 2.

5

The fonts and colors of a few buttons were changed. You can see all the values of the

properties of the various objects in NetBeans.

Finally, the event handler functions of all buttons were created, double-clicking on each

button, which creates an empty function and associates it to the actionPerformed event. A

function was associated to the event windowClosing of the JFrame object so as to intercept the

termination of the window.

After creating the GUI, you should program the Calculator class, which performs the

GUI. This class was automatically generated by NetBeans and extends the

javax.swing.JFrame inheriting all its variables and methods. It also defines the main function,

automatically generated to open the window when the application starts.

To facilitate interaction with the Text Area (jTextArea1) and enable the concurrent writing

to the terminal and to a file, we defined a function, public void Log(String str) presented

below. In addition, the "Clear" button clears the contents of the Text Area:
private void jButtonClearActionPerformed(java.awt.event.ActionEvent evt) {

 jTextArea1.setText("");

}

3.1.3. Class Calculator – Reading numbers

The number is stored in the text box jTextNumber, and a Boolean variable is also used to

store whether it is the first digit.
private boolean first_digit; // If it is the first digit of a number

The handle_digit method was created to concatenate the string digit number in the text

box every time you press a number button:
private void handle_digit(String number) {

 if ((state.last_oper() == '=') && first_digit) {

 // If the result from the last addition is not used

 Log(""); // Add na empty line to the output

 state.reset(); // Ignore last result

 }

 String str= jTextNumber.getText(); // get the string

 if (first_digit ||str.equals("0")) { // Ignore leading zeros

 jTextNumber.setText(number); // Sets the string

 } else {

 jTextNumber.setText(str+number); // Concatenate digit

 }

 first_digit= false; // The next digit is not the first!

}

The functions generated in NetBeans graphical environment use the previous function to

handle the numeric buttons (eg '1'):
private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {

 handle_digit("1");

}

The button 'C' handler function removes the last digit of the number. The method

jTextNumber.getText() returns a string with the contents of the box, whereas the method

jTextNumber.setText(str) modifies the string shown to the value of str.
private void jButtonCActionPerformed(java.awt.event.ActionEvent evt) {

 String str= jTextNumber.getText(); // Get the string

 if (str.length() > 1) { // Remove the last digit

 str= str.substring(0, str.length()-1); // substring from 0 to length-1

 jTextNumber.setText(str); // Set new string

 } else { // Deleted all digits

 first_digit= true;

 jTextNumber.setText("0");

 }

}

6

3.1.4. Class Calculator – Calculation

The object state, of class Calc_State, will be used to perform the calculation,

private Calc_State state; // Calculation state

initialized in the constructor of class Calculator:

state= new Calc_State(); // Allocates a new object Calc_State

The calc_number method was created to process the string in the text box, validating it,

and to invoke the operation push_operation on the state. Meanwhile, it controls the writing of

operations in the log. Note the use of the try – catch: if the number is valid, invokes the

method and returns true; otherwise it runs the code in catch, returning false.
private boolean calc_number(String number, char oper) {

 try {

 long value= Long.parseLong(number); // Converts 'String' to long

 if (state.last_oper() != '=') {

 Log(number); // Write number

 }

 Log(Character.toString(oper)); // Write operation

 return state.push_operation(value, oper); // Update state

} catch (Exception e) {

 Log("Invalid number: " + e + "\n");

 return false;

 }

}

The method that handles the '+' button only has to invoke the previous operation and

prepare the reading of the following number.
private void jButtonPlusActionPerformed(java.awt.event.ActionEvent evt)

 calc_number(jTextNumber.getText(), '+');

 first_digit= true;

}

The method that handles the button '=' is similar to the above, but additionally, it has to

write the result of the operation.
private void jButtonEqualsActionPerformed(java.awt.event.ActionEvent evt)

 if (calc_number(jTextNumber.getText(), '=')) {

 Log(Long.toString(state.operand())); // Writes the result of the operation

 jTextNumber.setText(Long.toString(state.operand())); // Update the number

 }

 first_digit= true; // Wait for first digit of next number

}

3.1.5. Class Calculator – Writing to file

A escrita no ficheiro vai requerer duas variáveis adicionais: o descritor de ficheiro f e o

objeto para escrita os. O ficheiro está ativo quando os!=null; caso contrário não se escreve no

ficheiro.

Writing the file requires two additional variables: the file descriptor f and the writing object

os. The file is active os!=null; otherwise no writing is done to the file.
private File f; // File object

private BufferedWriter os; // File writting objects

The method start_writing_to_file opens a window allowing the user to choose the

filename you want to save the log of operations, opening then the file writing object os. It

returns true on success, or false if the file is not open.
private boolean start_writing_to_file() {

 try {

 // Open FileChooser dialog window na wait for filename selection

7

 if (jFileChooser1.showSaveDialog(this) == JFileChooser.APPROVE_OPTION) {

 f= jFileChooser1.getSelectedFile(); // Get the filename selected

 Log("Writing to: "+f+"\n");

 os= new BufferedWriter(new OutputStreamWriter(

 new FileOutputStream(f), "8859_1")); // Open writing device

 return true; // Success – writing to file

 }

 } catch (Exception e) { // Error during file selection or opening

 System.err.println("Error selecting output file: "+e);

 }

 return false;

}

The method stop_writing_to_file does the opposite: it closes the file and writing

objects and frees the memory, seting them to null.
private void stop_writing_to_file() {

 try {

 if (os != null) { // If the writing device is open

 os.close(); // Close file writing device

 os= null; // and free memory setting references to null

 f= null;

 Log("Stopped writing\n");

 }

 } catch (Exception e) {

 System.err.println("Error: "+e);

 }

}

The control of writing to the file is done via the toggle button "ToFile." The following

function handles the events of the toggle button, starting or finishing writing to the file.
private void jToggleButtonFileActionPerformed(java.awt.event.ActionEvent evt) {

 if (jToggleButtonFile.isSelected()) { // If it is selected, start writing

 if (!start_writing_to_file()) {

 jToggleButtonFile.setSelected(false); // If failed, set button off

 }

 } else { // If it is not selected

 stop_writing_to_file();

 }

}

The writing of the operations to file was held at Log function, which writes to the TextArea,

to the terminal, and to the file, if it is open:
public void Log(String text) {

 jTextArea1.append(text+"\n"); // Write to the TextArea

 System.out.println(text); // Write to the terminal

 if (os != null) { // If file is open, write to file

 try {

 os.write(text + "\n");

 } catch (IOException ex) { // Close file, if write failed

 jTextArea1.append("Error writing to file: "+ex+"\n");

 stop_writing_to_file();

 }

 }

}

The writing of the contents in the file only occurs when the file is closed. To ensure that

nothing is lost when you close the application, the following function has been added to handle

the windowClosing event of JFrame object, triggered when the window closes.
private void formWindowClosing(java.awt.event.WindowEvent evt) {

 // Main window is closing - close file if it is open

 stop_writing_to_file();

}

8

3.1.6. Class Calculator – Starting and stopping the application

The application startup occurs from the main function, entirely created by NetBeans when

creating the project. In this function, and within a task managed by the graphical environment, a

new object of type Calculator is created and is made visible.
public static void main(String args[]) {

 java.awt.EventQueue.invokeLater(new Runnable() { // Create and display the form

 public void run() {

 new Calculator().setVisible(true);

 }

 });

}

The initial value of the variables of the Calculator class is defined in the constructor:
public Calculator() {

 initComponents(); // Start graphical window; created by NetBeans

 first_digit= true; // Waiting for first number

 state= new Calc_State(); // Create object with operand and operation state

}

During operation of the calculator, it is possible to restore the initial state (except for the

recording file) through the button CE:
private void jButtonCEActionPerformed(java.awt.event.ActionEvent evt)

 state.reset();

 Log(""); // Add an empty line

 first_digit= true;

 jTextNumber.setText("0");

}

3.2. COMPLETE CALCULATOR – EXERCISES FOR THE FIRST CLASS

The second phase of this project aims to complete the calculator previously started,

completing the set of keys ('0' to '9') and adding a new operation ('*'). This second phase will be

carried out by the students during the first class of the discipline.

3.2.1. Numerical buttons ‘0’ to ‘9’

As a first exercise, students should modify the GUI, so as to have all

the numerical buttons. You should open the file "Calculator.java"

selecting the "Design" in the editor. Then the eight Button objects should

be added to the form, in the first panel, changing its name and text,

according to the figure on the right.

In a second phase, you should create the functions (methods) for the

treatment of the new buttons, filling the corresponding code. To solve this

problem, it is suggested reading section 3.1.3.

3.2.2. Multiplication operation

As a second exercise, the aim is to add the multiplication operation to the calculator. This

exercise has three distinct phases:

 Add button ‘*’

 Program multiplication without considering precedence rules

 Program multiplication considering precedence rules

The first phase is similar to the previous exercise: add a button to the list of operations. The

second and third phases require the definition of a method for handling the '*' button and

reprogram the class Calc_State so as to make it recognize the multiplication operation. The

9

second phase should ignore the precedence of multiplication face to addition and calculate the

operations sequentially, i.e. "2+2*2" should give the result 8.

The third phase will again focus on the class Calc_State but requires adding more

variables to the class, to store up to two pending operations. In the case of “(2,+)(2,*)(2,=)” you

need to save (2,+), (2,*) and the calculations should only be done after receiving (2,=), yielding

the correct result (6).

3.2.3. Timing

If you arrive at this stage and still have at least 20 minutes, it is suggested a last exercise: if

the user does not press any key for 10 seconds in the middle of a calculation, the calculator

should display the partial result as if he had pressed the button '='. Do not forget to reset the

clock every time the user presses a key.

	1. Objective
	2. NetBeans environment for Java
	3. First application - Adder
	3.1. Simplified adder
	3.1.1. Class Calc_State
	3.1.2. Class Calculator – Graphical interface
	3.1.3. Class Calculator – Reading numbers
	3.1.4. Class Calculator – Calculation
	3.1.5. Class Calculator – Writing to file
	3.1.6. Class Calculator – Starting and stopping the application

	3.2. Complete Calculator – Exercises for the first class
	3.2.1. Numerical buttons ‘0’ to ‘9’
	3.2.2. Multiplication operation
	3.2.3. Timing

